文章编号: 1000-4750(2011)07-0165-06

# 碳纤维丝股锚固体系试验研究及受力分析

\*诸葛萍<sup>1</sup>,叶华文<sup>1</sup>,强士中<sup>1</sup>,刘明虎<sup>2</sup>

(1. 西南交通大学土木学院,四川,成都 610031; 2. 中交公路规划设计院有限公司,北京 100010)

摘 要:为研究碳纤维(CFRP)丝股粘结型锚具锚固性能及内部受力状态,该文设计了 19 丝 CFRP 丝股粘结型锚 具并对其进行了静载试验。3 个试件的 CFRP 丝间距分别为 4mm、2mm 和 1mm;试验对锚固区 CFRP 丝应变和 CFRP 丝-锚筒的相对位移进行测量;通过静载试验实测并结合理论计算分析了粘结型锚具的锚固性能、粘结应力 分布情况及变化规律。研究结果表明: 19 丝 CFRP 丝股粘结型锚具的锚固效率为 94.8%;CFRP 丝间距对锚固效 率影响较大,CFRP 丝间距越小,锚固性能越好;CFRP 丝-锚筒的相对位移主要是由填充介质的整体刚体滑移造 成的;锚固区 CFRP 丝表面的粘结应力峰值随荷载增加而逐渐由锚具的受荷端向自由端移动,粘结应力峰值随荷 载增加而逐渐增大;CFRP 丝表面压应力对锚固效率影响较大。

关键词:桥梁工程;锚具;静载试验;CFRP;粘结

中图分类号: U448 文献标志码: A

# EXPERIMENT INVESTIGATION AND MECHANICAL BEHAVIOR ANALYSIS OF MULTIPLE CFRP TENDONS ANCHORAGE SYSTEM

<sup>\*</sup>ZHUGE Ping<sup>1</sup>, YE Hua-wen<sup>1</sup>, QIANG Shi-zhong<sup>1</sup>, LIU Ming-hu<sup>2</sup>

(1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China;

2. China Communications Construction and Highway Consultants Company Limited, Beijing 100010, China)

**Abstract:** In order to investigate the anchorage performance and internal stress distribution of multiple CFRP tendon bond-type anchorage, multiple CFRP tendon bond-type anchorage with 19 tendons was designed and static performance was tested. Three specimens were tested in which the space between CFRP tendons of the specimens were 4mm, 2mm and 1mm, respectively. The CFRP tendon strain in anchorage zone and the relative displacement of the anchorage barrel were recorded at each loading level. The anchorage performance, the bond tress distribution of CFRP tendon-mortar interface and the bond stress variation were investigated through static loading testing and theoretical analyzing. The results show that the anchorage efficiency coefficient of tested anchorage is 94.8%. The space between CFRP tendons makes great impact to the anchorage performance, the higher concentration of CFRP tendons the better anchorage performance. The rigid body displacement of mortar leads to the major relative displacement of CFRP tendon-anchorage barrel. The peak bond stress shifts from the load end to the free end of bond-type anchorage and increases gradually when the loading level increases. The surface compressive stress of CFRP tendon in anchorage zone is also a greater impact to the anchorage performance.

Key words: bridge engineering; anchorage; static load test; carbon fiber reinforced plastic; bonding

基金项目: 国家 863 计划(2008AA11Z101)

作者简介: \*诸葛萍(1982-), 男, 浙江温州人, 博士, 从事桥梁工程研究(E-mail: zhuge.ping@163.com); 叶华文(1980-), 男, 湖北红安人, 讲师, 博士, 从事桥梁工程研究(E-mail: hbha2000@163.com); 强士中(1941-), 男, 陕西礼泉人, 教授, 博士, 博导, 中国钢结构协会理事, 从事桥梁工程研究(E-mail: qiangshizhong@163.com); 刘明虎(1971-), 男, 湖北潜江人, 教授级高工, 学士, 从事大跨径桥梁设计与研究(E-mail: liuminghu@vip.sina.com).

收稿日期: 2010-05-05; 修改日期: 2010-07-22

碳纤维增强复合材料(CFRP)具有强度高、重量 轻、耐腐蚀、热膨胀系数低等优点,将其作为完整 的构件应用于悬索桥主缆、斜拉桥拉索及体外预应 力等方面优势明显。但是,CFRP 材料存在抗剪强 度低、抗折性能差等缺点,因此,现有常规锚具不 适用于锚固 CFRP 丝股,需开发新锚具。

20 世纪 90 年代以来,国内外对 CFRP 拉索锚 具进行了一些研究,对大批量 CFRP 丝进行锚固主 要采用内填填充介质的粘结型锚具。瑞士联邦材料 试验和研究实验室(EMPA)在 90 年代对锚固大量 CFRP 平行丝束的内锥式粘结型锚进行了试验研 究,为减少 CFRP 丝表面粘结应力峰值,填充介质 沿轴向采用变刚度形式,其弹性模量从锚具受荷端 至自由端逐渐变大,取得了较好的锚固效果<sup>[1]</sup>;梅 葵花及邓年春对内锥(自由端)加直筒(受荷端)型 CFRP 丝束粘结型锚的锚固性能进行了静载试验研 究<sup>[2-3]</sup>,实测了此类锚具的锚固效率;方志对内填 活性粉末混凝土的直筒式锚具锚固性能进行了试 验实测,研究了锚具锚固双根 CFRP 丝时 CFRP 丝 的合理间距<sup>[4]</sup>; Burong Zhang 对内填膨胀水泥的 9 丝直筒式锚具锚固性能进行了试验实测,同时通过 试验确定了当采用普通素混凝土对 CFRP 丝进行锚 固时所需的最小锚固长度<sup>[5]</sup>;日本的 Kajima 公司研 发了能锚固 FRP 绞线的粘结型锚<sup>[6]</sup>,此锚具的受荷 端为内锥式,自由端为直筒式,在内部构造上有它 的特色。然而,上述研究的主要考察对象是锚固体 系的最终锚固性能,在研究锚具内部受力情况及锚 固机理方面欠研究。

在粘结型锚固体系的填充介质方面,含多根 FRP 丝的锚固体系大都采用环氧树脂胶,含单根 FRP 丝的锚固体系目前主要采用膨胀水泥<sup>[7]</sup>、环氧 树脂、环氧铁砂<sup>[8]</sup>及活性粉末混凝土(RPC)<sup>[9]</sup>等。

本文研制出了能锚固大批量 CFRP 丝股的粘结 型锚具,并开发了能使各丝束均衡受力的组装工 艺,通过静载试验研究了具不同 CFRP 丝间距的多 个试件的综合锚固性能,并对锚固区 CFRP 丝粘结 应力在各级荷载作用下的变化规律及分布情况进 行了试验实测和理论分析,通过上述研究总结出了 影响锚固性能的主要因素,为 CFRP 丝股粘结型锚 具的改进提供参考。

# 1 CFRP 丝股锚固体系介绍及试验 设计

## 1.1 锚固体系介绍

CFRP 丝股锚固体系的锚具采用内锥式粘结型 锚具。锚具与 CFRP 丝之间通过 CFRP 丝-填充介质 界面的粘结力、摩阻力和机械咬合力来传递外部荷 载。采用环氧树脂胶高目数石英砂混合料作为锚具 填充介质,添加石英砂目的就是降低环氧树脂胶用 量,以减少胶体各组分反应时产生的热量,减少胶 体内部孔隙率,提高锚固性能。锚具长 380mm,内 锥角为 2.5°。每个试件含有 19 丝 CFRP 丝, CFRP 丝在横截面上呈正六边形排列。CFRP 丝束内锥式 粘结型锚固体系如图 1 所示。CFRP 丝材料性能如 表1所示,采用直径较小的CFRP丝,可增加CFRP 丝与粘结胶体的接触面积,利于 CFRP 丝股的锚固 和锚具锚固效率的提高。由于 CFRP 丝直径较小, 且采用热挤成形工艺生产,其性能在 CFRP 丝长度 方向上有一定的离散性,因此表1中极限抗拉强度 平均值(实测)较名义计算平均值(2300MPa)偏低。



| Table 1 1 | Material | properties | of CFRP | tendon |
|-----------|----------|------------|---------|--------|
|-----------|----------|------------|---------|--------|

| 名义    | 实测    | 主西亚十 | 极限抗拉     | 弹性     | 极限    |
|-------|-------|------|----------|--------|-------|
| 直径/mm | 直径/mm | 衣囬形式 | 平均强度/MPa | 模量/GPa | 延伸率   |
| 5     | 4.81  | 微压纹  | 2200     | 140    | 1.57% |

#### 1.2 试验工况设置及数据采集布置

试验共设置 3 个不同的试件, 3 个试件 CFRP 丝横向间距分别为 4mm、2mm 和 1mm, 其它参数 相同,通过静载试验研究 CFRP 丝间距对锚固性能 的影响,确定其中最优的间距形式。参考有关技术 规程<sup>[10]</sup>并结合试验台座实际尺寸情况后,试件的 CFRP 丝下料长度设置为 3.16m。

为研究 CFRP 丝股锚固体系的受力状态,试件

在静载试验过程中设置了多个实测项目,全面分析 所示。 锚固体系的整体及细部力学行为。实测方案如表 2

表 2 锚固体系试验实测项目

Table 2 Test programs of the bond-type anchorage system

| 实测项目           | 布置情况                | 研究目的                          |
|----------------|---------------------|-------------------------------|
| 锚固区 CFRP 丝应变   | 每丝沿纵向布置6个测点,选3丝进行布置 | 研究锚固区粘结应力变化规律及分布情况            |
| 中间自由段 CFRP 丝应变 | 每丝中点处设1个测点,选7丝进行布置  | 研究 19 丝 CFRP 丝间受力的均匀性         |
| 锚筒外表面环向应变      | 每锚沿轴向设6个测点,锚筒两侧对称设置 | 研究锚筒受力状态                      |
| 锚具前后 CFRP 丝滑移量 | 每锚设置3个位移传感器         | 研究 CFRP 丝滑移量及 CFRP 丝-填充介质刚体位移 |
| 试件极限拉力         | 试件一端设1个压力传感器        | 研究锚固体系的极限承载力                  |

说明: 1. 表 2 中实测项目除了第 2 项和第 5 项外,其它项目各测点在试件两端锚固区呈对称布置;

2. 各实测项目数据在各级荷载下均作了记录。

#### 1.3 试件组装及试验安装

每个试件的总含丝量为 19 丝,为了使试件在 组装过程中保证各 CFRP 丝间距相等且保持直线状 态,在刚度较大的平直胎座上进行组装,自由段设 置多个 PVC 定位卡,试件如图 2 所示。



图 2 CFRP 丝股锚固体系试件 Fig.2 Assembly of multiple CFRP tendons anchorage system

CFRP 丝表面应变片在试件组装前进行粘贴。 由于 CFRP 丝在极限状态时其应变达15000με以上, 普通的应变片粘贴工艺无法满足测量要求,需用特殊的粘结剂配合加温加压工艺进行粘贴。在温度为140℃,应变片表面压力为2MPa的条件下放置2h后可满足测量要求。由于试件较长,加温加压辅助装置需进行特殊设计和安装。此外,由于锚具内部空间较小,胶体反应时释放的热量使得锚固区具有较高的温度,因此,应变片的导线需选择耐高温的超细特殊导线,选择此种导线还可在很大程度上降低对锚固性能的影响以及试件的组装难度。

所有试件的锚筒内壁均喷涂石蜡以提高锚固 效率。喷涂石蜡可使填充介质在受力时整体向锥形 空间移动,增加了 CFRP 丝表面径向压应力,从而 使锚具的锚固效率得到提高。试件在刚性试验台座 上进行静载试验,试件安装如图 3 所示。



至 5 成件 瓜葱 女表 Fig.3 Test set-up

#### 1.4 静载试验加载方案

参考有关技术规程<sup>[10]</sup>静载试验加载方案,静载 张拉试验开始后,先对试件施加 5%的 *F*<sub>cu</sub>(极限总 设计拉力)后卸载,接着开始张拉,每级荷载增量为 10% *F*<sub>cu</sub>,直至张拉至 40% *F*<sub>cu</sub>,之后各级荷载增量 变为 5% *F*<sub>cu</sub>,直至破坏。其中,每加一级荷载后持 荷,待各试验设备读数稳定才可记录应变及位移数 据。日本 JSCE-E 531-1995 对加载程序建议为 100MPa/min-500MPa/min<sup>[11]</sup>,本试验采用的加载 速度控制在 200MPa/min 左右。

# 2 试验结果及分析

#### 2.1 CFRP 丝股锚具综合锚固性能分析

CFRP 丝股锚具的综合锚固性能主要由锚固效 率系数及 CFRP 丝滑移量两个指标加以评定。其中 锚固效率系数为主要指标,它能较直观体现锚具的 锚固性能。

2.1.1 锚固效率分析

锚固效率系数参考文献[10]规定按下式计算:

$$\eta_a = \frac{F_{apu}}{\eta_p \eta f_{pm}} \tag{1}$$

式中:  $F_{apu}$ 为 CFRP 丝股锚固体系实测极限拉力;  $\eta_p$ 为 CFRP 丝效率系数(试件中 CFRP 丝为 13 根-19 根时,  $\eta_p = 0.98$ ); *n*为 CFRP 丝根数,  $f_{om}$ 为

实测 CFRP 单丝平均极限抗拉力。

各试件的静载试验结果如表 3 所示,极限状态 下的破坏形态如图 4 所示。

| 表 3     | 试件静载试验结果                    |
|---------|-----------------------------|
| Table 3 | Static loading test results |

| 试件编号 | 丝数 | 丝间距/mm | F <sub>apu</sub> /kN | <i>nf<sub>pm</sub></i> /kN | $\eta_a$ | 破坏现象                          |
|------|----|--------|----------------------|----------------------------|----------|-------------------------------|
| NJ1  | 19 | 4      | 581                  | 759                        | 0.7809   | 部分外层 CFRP 丝拉断后整体破坏            |
| NJ2  | 19 | 2      | 642                  | 759                        | 0.8629   | 连续4根外层 CFRP 丝在靠近锥口(内侧)处被拉断而破坏 |
| NJ3  | 19 | 1      | 705                  | 759                        | 0.9476   | 连续4根外层 CFRP 丝在靠近锥口(内侧)处被拉断而破坏 |
|      |    |        |                      |                            |          |                               |





(a) 试件 NJ1 破坏形态

(b) 试件 NJ2 破坏形态



(c) 试件 NJ3 破坏形态图 4 试件的破坏形态Fig.4 Specimens Failure modes

对于 NJ1 试件,由于 CFRP 丝在 19 孔端堵板 处与孔边缘出现刚性接触,部分外层 CFRP 丝被拉 断时产生的巨大振动致使其它 CFRP 丝在端堵板处 被振坏,如图 4(a)所示。试件 NJ2 及试件 NJ3 为了 避免上述情况的发生,在端堵板中心位置设置了面 积较大的单个六边形孔,19 丝 CFRP 丝在 PVC 定 位卡的辅助下从六边形孔中心穿过,且使外层 CFRP 丝避免与六边形孔边接触,最后对其进行 密封。

3个试件中,试件 NJ3的锚固效率系数最大, 达到 94.8%,试件 NJ2 次之,试件 NJ1 最小。从各 试件的破坏现象可看出,在极限拉力的作用下,试 件的外层 CFRP 丝均首先出现破坏而使整个试件进 入破坏状态,这是由于填充介质轴向变形能力在横 截面上自形心处向外由大变小,因此,在极限拉力 作用下,相对于其它 CFRP 丝,外层 CFRP 丝总是 先进入极限状态。由此可见,在锚具规格相同及 CFRP 丝数量相同的情况下,若 CFRP 丝间距越大, 则 CFRP 丝间的受力就越不均匀,对应试件的极限 承载力也就越小。3 个试件的锚固效率系数相差较 大,说明 CFRP 丝间距大小对 CFRP 丝受力的均匀 性影响较大。在其他条件一致的情况下,CFRP 丝 间距若进一步减小,则各 CFRP 丝的受力将会越均 匀,CFRP 丝股锚固体系的锚固效率在理论上将会 进一步提高,但是,若 CFRP 丝间距过小,则会使 组装难度过大,且很难保证 CFRP 丝间填充介质处 于理想密实状态。

本文的 CFRP 丝股锚具的锚固效率系数达到 94.8%。而在实桥应用中, CFRP 丝股的长度远长于 上述试件的长度,因此,CFRP 丝受力的均匀性将 会更好,其锚固效率系数将会进一步提高,说明本 文研发的锚具能胜任对 CFRP 丝股的锚固。

## 2.1.2 CFRP 丝-锚筒相对滑移

CFRP 丝-锚筒在各级荷载作用下的相对滑移量 通过位移传感器(LVDT)测得,LVDT 的安装如图 3 所示,主要实测锚具自由端及受荷端 CFRP 丝与锚 筒之间的相对滑移。因受荷端测点位置离锚具端部 有一定的距离,因此,受荷端 CFRP 丝-锚筒的相对 滑移量则通过受荷端 LVDT 的实测值减去相应长度 CFRP 丝的弹性变形量而得;自由端 CFRP 丝-锚筒 的相对滑移量可直接通过自由端的 LVDT 测得。各 试件的 CFRP 丝-锚筒相对滑移量如图 5 所示。





注: 图中 LF-A 代表左锚自由端 CFRP 丝与锚筒的相对滑移量; 图中 LE-A 代表左锚受荷端 CFRP 丝与锚筒的相对滑移量; 图中 RF-A 代表右锚自由端 CFRP 丝与锚筒的相对滑移量; 图中 RE-A 代表右锚受荷端 CFRP 丝与锚筒的相对滑移量.

图 5 CFRP 丝-锚筒相对滑移量 Fig.5 Relative displacement of CFRP tendon-barrel

从图 5 中可看出, 各试件 CFRP 丝-锚筒相对滑移量随着荷载的增加近似呈线性增长, NJ3 的滑移量相对与其他试件小。试验还对受荷端填充介质-锚筒相对滑移进行了测量, 极限状态下其滑移量小于受荷端 CFRP 丝-锚筒相对滑移量, 但又大于自由端 CFRP 丝-锚筒相对滑移量, 说明自由端 CFRP 丝与填充介质没有发生相对滑移, 而受荷端 CFRP 丝与填充介质发生了相对滑移, 可进一步说明离受荷端口一定范围内 CFRP 丝与填充介质发生了相互剥离现象, 也说明 CFRP 丝-锚筒相对滑移量中的绝大部分是由填充介质的刚体滑移造成的。

综合上述,试件 NJ3 的综合锚固性能最好。

# 2.2 锚固区 CFRP 丝表面粘结应力分布

确定锚固区 CFRP 丝表面粘结应力的变化规律 及分布情况对建立锚固区粘结应力分布模型、预测 锚固体系极限承载力及设计最优参数组合的锚具 有着重要意义。粘结应力由粘结力、摩阻力及机械 咬合力组成。利用锚固区应变片的实测数据,并结 合计算可得锚固区 CFRP 丝表面粘结应力的分布情 况。CFRP 丝表面应变片分布如图 6 所示,第i段 CFRP 丝表面粘结应力计算式如下:

$$\tau_i = \frac{(\xi_i - \xi_{i-1})EA}{\pi dl_i} \tag{2}$$

式中: $\xi_i$ 为第*i* 张应变片的实测应变;*E*为 CFRP 丝弹性模量;*A*为 CFRP 丝横截面面积;*d*为 CFRP 丝直径;*l<sub>i</sub>*为第*i*段 CFRP 丝长度。



将锚固区 CFRP 丝表面应变实测值代入式(2) 可得相邻两点间的平均粘结应力,从而可获得粘结 应力沿长度方向的分布情况及随荷载的变化规律。 平均粘结应力实测结果如图 7 所示。由图 7 可知, 随荷载的增加,CFRP 丝表面粘结应力峰值逐渐向 锚具自由端转移;荷载越大,粘结应力的分布范围 也就越广;粘结应力峰值大小随拉力的增加也逐渐 增大(这与直筒粘结型锚粘结应力峰值大小保持不 变有着重要区别<sup>[12]</sup>),最大拉力对应的峰值是最小 拉力对应的峰值的 2.4 倍,且 CFRP 丝表面径向压 应力随荷载的增加而增大,说明 CFRP 丝表面径向 压应力对粘结应力峰值及锚固效率系数影响很大, 同时也说明,对具较高表面粗糙度的 CFRP 丝,其 表面的摩阻力和机械咬合力在总粘结应力中所占 的比例较高。



从图 7 还可看出,受荷端端口 CFRP 丝表面粘 结应力随荷载的增加出现先增后减随后再增加的 现象,这是由于开始加载时,此处粘结应力逐渐增 大,粘结应力达到峰值后再加大荷载时,峰值逐渐 向自由端移动,随后 CFRP 丝与填充介质之间出现 剥离,粘结应力逐渐降至最小,当荷载继续增加时, CFRP 丝表面的压应力也逐渐增大,相应界面之间 的摩阻力及咬合力也逐渐增大,使得粘结应力又逐 渐增大,但此时其绝对值仍然较小。由此可见,对 此类锚具,其锚固性能随锚具长度的增加而增加, 但当锚具达到一定长度后,锚固性能增量很有限。

图 7 数据代表相邻应变片之间的平均粘结力, 由于试件中相邻应变片之间的距离达 68mm,因此, 各级荷载对应的实际粘结应力峰值要比图示的大, 但粘结应力随荷载的变化规律与实际相同。获得较 精准的粘结应力峰值需增加应变片数量,但这会对 锚固性能带来一定的影响。

# 3 CFRP 丝股锚具性能影响因素分析

影响 CFRP 丝股锚具锚固性能的因素很多,通 过试验和理论分析后,其主要影响因素归纳为如下 几点:

1) CFRP 丝表面形式。压纹表面的 CFRP 丝比 光圆表面更容易锚固,即粗糙表面利于锚固。

2) 锚具长度。锚具锚固性能随长度的增加而 增加,但当锚具达到一定长度后,锚固性能增量很 有限。

3) CFRP 丝数量及间距。在锚筒构造相同的情况下, CFRP 丝数多者可提供更大的径向压力,锚固更可靠, CFRP 丝间距小者, CFRP 丝间受力更均匀,锚固效率更高。

4) 组装工艺。组装时需尽量保证各 CFRP 丝之 间及 CFRP 丝与试件的中心轴之间相互平行,以促 进 CFRP 丝均匀受力;同时还要避免扭转等而导致 次应力的现象。

## 4 结论

(1) CFRP 丝间距对锚固效率影响较大,本文研制的间距为 1mm 的 19 丝 CFRP 丝股锚具锚固效率 系数达 94.8%;在填充介质密实度相同的情况下, CFRP 丝越集中,锚固性能越好。

(2) 锚固区 CFRP 丝表面粘结应力峰值随荷载 的增加而逐渐向锚具自由端转移,峰值大小随荷载 的增加而逐渐增大;对于表面带压纹或粗糙度较大 的 CFRP 丝,表面径向压应力对粘结应力的大小及 锚固性能影响较大。

(3) 对于锚筒内壁涂润滑物的锚具, CFRP 丝与 锚筒的相对滑移主要是由填充介质的整体刚体滑 移造成的;极限状态时,受荷端出现 CFRP 丝与填 充介质相互剥离现象。

#### 参考文献:

Chinese)

- [1] Urs Meier. Carbon fiber reinforced polymer cables: Why? Why Not? What If? [C]. Dhahran: 11th Arab Structural Engineering Conference (ASEC), 2009.
- [2] 梅葵花, 吕志涛, 张继文, 臧华. 斜拉索锚具的静载试 验研究[J]. 桥梁建设, 2005, 20(4): 20-23.
   Mei Kuihua, Lu Zhitao, Zhang Jiwen, Zang Hua. Study of static load tests of CFRP stay cable anchor [J]. Bridge Construction, 2005, 20(4): 20-23. (in Chinese)
- [3] 邓年春,欧进萍,周智,龙跃,蒋业东.多丝碳纤维拉 索研制及静载试验研究[J]. 材料科学与工艺, 2008, 16(4): 463-470.
  Deng Nianchun, Ou Jinping, Zhou Zhi, Long Yue, Jiang Yedong. Development and static load tests of multi-strand carbon fiber reinforced polymer stay cables [J]. Materials Science Technology, 2008, 16(4): 463-
- 470. (in Chinese)
  [4] 方志,蒋田勇,梁栋. CFRP 筋在活性粉末混凝土中的 锚固性能[J]. 湖南大学学报(自然科学版), 2007, 34(7): 1-5.
  Fang Zhi, Jiang Tianyong, Liang Dong. The anchorage behavior of CFRP tendons in RPC [J]. Journal of Hunan University (Natural Sciences), 2007, 34(7): 1-5. (in
- [5] Burong Zhang, Brahim Benmokrane, Usama A A Ebead. Design and evaluation of fiber-reinforced polymer bond-type anchorages and ground anchors [J]. International Journal of Geomechanics, 2006, 6(3): 166-175.
- [6] Thomas Keller. Use of fibre reinforced polymers in bridge construction [M]. Zurich: International Association for Bridge and Structral Engineering (IABSE), 2003.
- [7] Brahim Benmokrane, Burong Zhang, Adil Chennouf. Tensile properties and pullout behaviour of AFRP and CFRP rods for grouted anchor applications [J]. Construction and Building Materials, 2000, 14(3): 157– 170.
- [8] 方志,梁栋. 单根碳纤维(CFRP)预应力筋粘结式锚具的试验研究[J]. 南华大学学报(理工版), 2004, 18(1): 35-37.
  Fang Zhi, Liang Dong. A research into bond type anchorage of CFRP tendon [J]. Journal of Nanhua University (Science & Engineering) 2004 18(1): 35-

University (Science & Engineering), 2004, 18(1): 35-37. (in Chinese) 淡姑、陈顺佳、古志、迁州松末浪凝土(**PPC**), 社選任维

[9] 梁栋,陈顺伟,方志.活性粉末混凝土(RPC)对碳纤维 (CFRP)筋锚固性能的试验研究[J].河北工业大学学报, 2006,35(1):66-71.
Liang Dong, Chen Shunwei, Fang Zhi. Experimental investigation on the anchorage performance of CFRP tendon bonded by RPC [J]. Journal of Hebei University of Thechnology, 2006, 35(1): 66-71. (in Chinese)

(参考文献[10]-[12]转第179页)

Chinese)

ATMD 组合控制系统,将 TMD 和 ATMD 分别对斜 拉桥结构的低阶和高阶模态振型调谐,实现了对风 荷载作用下位移和加速度响应的有效减振。本文仅 分析了对目前工程应用更为可行的阻尼器总质量 为 20t 的情况,当适当加大 TMD 和 ATMD 的质量 时可取得更好的减振效果。

#### 参考文献:

- 欧进萍. 结构振动控制——主动、半主动和智能控制
   [M]. 北京:科学出版社, 2003.
   Ou Jinping. Structural vibration control—active, semi-active and smart control [M]. Beijing: Science Press, 2003. (in Chinese)
- [2] Yang J N, Agrawal A K, Samali B, Wu J C. Benchmark problem for response control of wind-excited tall buildings [J]. Journal of Engineering Mechanics, 2004, 130(4): 437-466.
- [3] Cao H, Reinhorn A M, Song T T. Design of an active mass damper for a tall TV tower in Nanjing, China [J]. Engineering Structures, 1998, 20(3): 134-143.
- [4] Yamazaki S, Nagata N, Abiru H. Tuned active dampers installed in the Minato Mirai (MM) 21 Landmark Tower in Yokohama [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1992, 43(1-3): 1937-1948.
- [5] 文永奎, 孙利民. 大跨度斜拉桥钢塔施工阶段振动控制[J]. 同济大学学报, 2006, 34(9): 1153-1158.
  Wen Yongkui, Sun Limin. Vibration control of steel tower of large span cable-stayed bridge under construction [J]. Journal of Tongji University, 2006, 34(9): 1153-1158. (in Chinese)
- [6] Warburton G B, Ayorinde E O. Optimum absorber parameters for simple systems [J]. Earthquake Engineering and Structural Dynamics, 1982, 8: 197– 217.

- [7] 李小珍, 蔡婧, 强士中. 南京长江二桥南汊桥地震反应的主动控制及 AMD 系统参数设计[J]. 工程力学, 2003, 20(4): 78-85.
  Li Xiaozhen, Cai Jing, Qiang Shizhong. Active control of seismic response and design of AMD system parameters for the 2nd Nanjing Yangtze-river bridge [J]. Engineering Mechanics, 2003, 20(4): 78-85. (in
  - [8] Schemmann A G, Smith H A. Vibration control of cable-stayed bridges — part 1: modeling issues [J]. Earthquake Engineering and Structural Dynamics, 1998, 27(8): 811-824.
  - [9] Dyke S J, Caicedo J M, Turan G, Bergman L A, Hague S. Phase I benchmark control problem for seismic response of cable-stayed bridges [J]. Journal of Structural Engineering, 2003, 129(7): 857-872.
  - [10] 丁泉顺. 大跨度桥梁耦合颤抖振响应的精细化分析
    [M]. 上海: 同济大学, 2001.
    Ding Quanshun. Refinement of coupled flutter and buffeting analysis for long-span bridges [M]. Shanghai: Tongji University, 2001. (in Chinese)
  - [11] Jones N P, Scanlan R H. Theory and full-bridge modeling of wind response of cable-supported bridge [J]. Journal of Bridge Engineering, 2001, 6: 365-375.
  - [12] Jabbari F, Schmitenforf W E, Yang J N.  $H_{\infty}$  control for seismic-excited buildings with accelerations feedback [J]. Journal of Engineering Mechanics, 1995, 121(9): 994-1002.
  - [13] 朱乐东.南京长江第三大桥主桥箱梁节段模型风洞试验研究[R].上海:同济大学土木工程防灾国家重点实验室,2003.

Zhu Ledong. Report of wind tunnel test of girder section model of the 3rd Nanjing Bridge over Yangtze-river [R]. Shanghai: State Key Laboratory for Disaster Reduction of Civil Engineering, 2003. (in Chinese)

#### (上接第170页)

- [10] JGJ 85-2002 J 219-2002, 预应力筋锚具、夹具和连接器应用技术规程[S]. 北京:中国建筑工业出版社, 2002.
   JGJ 85-2002 J 219-2002, Technical specification for application of anchorage, grip and coupler for prestressing tendons [S]. Beijing: China Architecture & Building Press, 2002. (in Chinese)
- [11] JSCE-E 531-1995, Test method for tensile properties of

continuous fiber reinforcing materials [S]. Tokyo: Japan Society of Civil Engineers, 1995.

[12] Khin M, Harada T, Tokumitsu S, Idemitsu T. The anchorage mechanism for FRP tendons using highly expansive materials for anchoring [C]. Montreal: 2nd International Conference on Advanced Composite Materials In Bridges and Structures, 1996.