AN IMPROVED THIN LIQUID FILM METHOD CONSIDERING DROPLET BREAKUP AND COALESCENCE OF GAS-LIQUID ANNULAR FLOW
-
摘要:
气、液两相环状流是工程实践中一种广泛应用的安全、经济的流动型式。为深入研究其特性和转换机制,基于薄液膜法(TLFM),通过泰勒类比破碎模型(TAB)模拟液滴的破碎过程,利用O'Rourke随机估计算法考虑液滴间的碰撞作用,并通过Rosin-Rammler分布优化夹带液滴的尺寸,全面再现了环状流中液相的夹带、破碎、融合、沉积的动态平衡过程。使用改进后的薄液膜法对公开文献中经典的环状流实验进行数值模拟,粒径分布结果与实验基本一致,验证了模型的准确性。对环状流的两个重要参数:夹带分数、液膜厚度进行对比验证,平均绝对百分比误差(MAPE)在10%及以内,提高了TLFM的精度。最后,使用该模型对不同表观流速条件下的管道环状流进行模拟,分析表观流速对环状流液滴分布的影响。
Abstract:Gas-liquid annular flow is a widely applied flow pattern in engineering due to its safety and cost-effectiveness. It aims to investigate the characteristics and transition mechanisms of annular flow. The thin liquid film method (TLFM) was employed and the Taylor analogy breakup (TAB) model was utilized to simulate droplet breakup. The O’Rourke’s stochastic estimation algorithm was used to account for droplet coalescence, and the Rosin-Rammler distribution was used to optimize the size distribution of entrained droplets. This comprehensive approach replicates the dynamic equilibrium processes of entrainment, breakup, coalescence, and deposition within annular flow. To validate our improved TLFM, we conducted numerical simulations of classic annular flow experiments from the literature. The resulting droplet size distributions closely matched experimental data, confirming the accuracy of our model. We compared two key parameters of annular flow—entrainment fraction and liquid film thickness. The Mean Absolute Percentage Error (MAPE) was within 10%, demonstrating enhanced precision of the original TLFM. Finally, the model was used to simulate annular flow in pipelines under different superficial velocities, analyzing the impact of velocity on droplet distribution.
-
Keywords:
- annular flow /
- breakup /
- coalescence /
- entrainment /
- thin liquid film /
- computational fluid dynamics
-
-
表 1 网格独立性验证
Table 1 Grid independence verification
网格名称 横截面单元格 网格数量 夹带分数 网格1 96 33 216 0.935 网格2 441 152 586 0.928 网格3 693 239 778 0.923 网格4 1957 677 122 0.922 实验值 − − 0.921 表 2 实验工况汇总
Table 2 Experimental parameter summary
工况 工况数 介质 D/mm σ/(N/mm) μl/(mPa⋅s) P/bar ρg/(kg/m3) Jg/(m/s) Jl/(m/s) WANG等[34] 4 空气-水 50.00 72.00 1.00 1.00 1.161 25.0~58.0 0.053 HAY等[35] 1 空气-水 9.50 72.00 1.00 1.00 1.161 60.8 0.169 TATTERSON等[36] 1 空气-水 42.00 72.00 1.00 1.00 1.161 36.0 0.100 FORE和DUKLER[37] 2 空气-甘油溶液 50.80 70.00 6.05 1.16 1.420 23.2~31.6 0.01478 OWEN等[38] 9 空气-水 32.00 72.00 1.00 1.00 1.161 23.0~48.0 0.300 SAWANT等[39] 6 空气-水 9.40 72.00 1.00 1.20~
4.001.470~
4.90032.0~95.0 0.050 ALAMU和AZZOPARD[40] 21 空气-水 19.00 72.00 1.00 1.50 1.754 13.0~43.0 0.050~0.150 SCHUBRING等[41] 5 空气-水 23.40 72.00 1.00 1.00 1.161 35.0~75.0 0.063 表 3 参数设定
Table 3 Parameter setting
表观流速 组1 气速Jg/(m/s) 58 液速Jl/(m/s) 0.05 0.10 0.15 0.20 组2 气速Jg/(m/s) 45 58 75 90 液速Jl/(m/s) 0.1 -
[1] 赵宁, 贾慧君, 郭立强, 等. 环状流液滴夹带率测量方法及分析 [J]. 化工进展, 2021, 40(12): 6469 − 6478. ZHAO Ning, JIA Huijun, GUO Liqiang, et al. Measurement method and analysis of droplet entrainment in annular flow [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6469 − 6478. (in Chinese)
[2] 吕晓明, 丁忠满. 水平管道中汽液两相流的流型描述及测量方法的研究 [J]. 水利学报, 1990, 22(10): 23 − 27. doi: 10.3321/j.issn:0559-9350.1990.10.004 LYU Xiaoming, DING Zhongman. Flow patterns of gas-liquid two phase flow in horizontal tubes and their measurements [J]. Journal of Hydraulic Engineering, 1990, 22(10): 23 − 27. (in Chinese) doi: 10.3321/j.issn:0559-9350.1990.10.004
[3] 丁梦岩, 王钰渺, 孙伦, 等. 基于薄液膜法的气液环状流数值分析 [J]. 工程力学, http://kns.cnki.net/kcms/detail/11.2595.O3.20231218.2054.014.html. 2024-10-25. DING Mengyan, WANG Yumiao, SUN Lun, et al. Numerical analysis of gas-liquid annular flow using thin liquid film method [J]. Engineering Mechanics, http://kns.cnki.net/kcms/detail/11.2595.O3.20231218.2054.014.html.2024-10-25. (in Chinese)
[4] 郑冬妍, 邓道明, 诸葛夏侃, 等. 气井积液临界气速预测新方法 [J]. 工程力学, http://kns.cnki.net/kcms/detail/11.2595.O3.20230311.1530.002.html. 2024-10-25. ZHENG Dongyan, DENG Daoming, ZHUGE Xiakan, et al. A new method for predicting critical gas velocities of liquid loading in gas wells [J]. Engineering Mechanics, http://kns.cnki.net/kcms/detail/11.2595.O3.20230311.1530.002.html. 2024-10-25.(in Chinese)
[5] 哈雯, 杨杨, 唐雨, 等. 油水环状流截面相含率超声衰减法测量 [J]. 化工进展, 2024, 43(2): 768 − 780. HA Wen, YANG Yang, TANG Yu, et al. Ultrasonic attenuation method for measuring phase holdup in oil-water annular flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 768 − 780. (in Chinese)
[6] 黄间珍, 何奎, 汪双凤. 微小T型三通中弹环状流的相分配实验与理论建模[J]. 工程热物理学报, 2012, 33(10): 1715 − 1718. HUANG Jianzhen, HE Kui, WANG Shuangfeng. Theoretical modeling and experimental study of slug-annular gas-liquid flow splitting at a micro-T-junction [J]. Journal of Engineering Thermophysics, 2012, 33(10): 1715 − 1718. (in Chinese)
[7] 张海滨, 裴焕, 张浩, 等. 气液两相环状流射流液膜的破碎与雾化特性实验研究 [J]. 推进技术, 2022, 43(4): 200046. ZHANG Haibin, PEI Huan, ZHANG Hao, et al. Experimental study on liquid film breakup and atomization of gas-liquid annular flow jet [J]. Journal of Propulsion Technology, 2022, 43(4): 200046. (in Chinese)
[8] DE BERTODANO M A L, ASSAD A, BEUS S G. Experiments for entrainment rate of droplets in the annular regime [J]. International Journal of Multiphase Flow, 2001, 27(4): 685 − 699. doi: 10.1016/S0301-9322(00)00046-X
[9] ALIYU A M, ALMABROK A A, BABA Y D, et al. Prediction of entrained droplet fraction in co-current annular gas-liquid flow in vertical pipes [J]. Experimental Thermal and Fluid Science, 2017, 85: 287 − 304. doi: 10.1016/j.expthermflusci.2017.03.012
[10] AL-AUFI Y A, HEWAKANDAMBY B N, DIMITRAKIS G, et al. Thin film thickness measurements in two phase annular flows using ultrasonic pulse echo techniques [J]. Flow measurement and Instrumentation, 2019, 66: 67 − 78. doi: 10.1016/j.flowmeasinst.2019.02.008
[11] WILLIS I J. Upwards annular two-phase air/water flow in vertical tubes [J]. Chemical Engineering Science, 1965, 20(10): 895 − 902. doi: 10.1016/0009-2509(65)80086-0
[12] WALLIS G B. One-dimensional two-phase flow [M]. New York: McGraw-Hill, 1969: 315 − 372.
[13] GOVIER G W, AZIZ K, SCHOWALTER W R. The flow of complex mixtures in pipes [J]. Journal of Applied Mechanics, 1973, 40(2): 404.
[14] HEWITT G F, Hall-Taylor N S. Annular two-phase flow [M]. Oxford: Pergamon Press, 1970: 50 − 97.
[15] OLIEMANS R V A, POTS B F M, TROMPÉ N. Modelling of annular dispersed two-phase flow in vertical pipes [J]. International Journal of Multiphase Flow, 1986, 12(5): 711 − 732. doi: 10.1016/0301-9322(86)90047-9
[16] WANG Y M, ZHANG R, LIU Y, et al. Probability model for gas–liquid annular flow in dynamic equilibrium among the processes of atomization, deposition, breakup, and coalescence [J]. Physics of Fluids, 2024, 36(2): 025152. doi: 10.1063/5.0188099
[17] 郭涛, 孙震, 张帆. T型通道微流控芯片中液滴生成的影响因素研究 [J]. 工程力学, 2024, 41(7): 239 − 248. doi: 10.6052/j.issn.1000-4750.2022.05.0493 GUO Tao, SUN Zhen, ZHANG Fan. The influence factors of micro-droplet formation in T-junction micro-fluidic chip [J]. Engineering Mechanics, 2024, 41(7): 239 − 248. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.05.0493
[18] LIU Y, LI W Z, QUAN S L. A self-standing two-fluid CFD model for vertical upward two-phase annular flow [J]. Nuclear Engineering and Design, 2011, 241(5): 1636 − 1642. doi: 10.1016/j.nucengdes.2011.01.037
[19] 徐海淞, 王季, 熊进标, 等. 基于两相CFD方法的竖直圆管环状流预测研究 [J]. 核动力工程, 2019, 40(6): 7 − 12. XU Haisong, WANG Ji, XIONG Jinbiao, et al. Prediction of annular flow in vertical round tube based on two-phase CFD approach [J]. Nuclear Power Engineering, 2019, 40(6): 7 − 12. (in Chinese)
[20] WANG T, XIA Z H, CHEN C X. Coupled CFD-PBM simulation of bubble size distribution in a 2D gas-solid bubbling fluidized bed with a bubble coalescence and breakup model [J]. Chemical Engineering Science, 2019, 202: 208 − 221.
[21] KISHORE B N, JAYANTI S. A multidimensional model for annular gas–liquid flow [J]. Chemical Engineering Science, 2004, 59(17): 3577 − 3589. doi: 10.1016/j.ces.2004.06.003
[22] GUAN X R, ZHAO Y L, WANG J J, et al. Numerical analysis of quasi-steady flow characteristics in large diameter pipes with low liquid loading under high pressure [J]. Journal of Natural Gas Science and Engineering, 2015, 26: 907 − 920. doi: 10.1016/j.jngse.2015.07.039
[23] LI H P, ANGLART H. Dryout prediction with CFD model of annular two-phase flow [J]. Nuclear Engineering and Design, 2019, 349: 20 − 26. doi: 10.1016/j.nucengdes.2019.04.020
[24] ZHANG R, ZHANG S S, DING M Y. Modelling of annular flow and sand erosion in bends using a thin liquid film method [J]. Powder Technology, 2024, 432: 119111. doi: 10.1016/j.powtec.2023.119111
[25] O'ROURKE P J, AMSDEN A A. The TAB method for numerical calculation of spray droplet breakup [R]. Los Alamos: Los Alamos National Laboratory, 1987.
[26] QIAN J, LAW C K. Regimes of coalescence and separation in droplet collision [J]. Journal of Fluid Mechanics, 1997, 331: 59 − 80. doi: 10.1017/S0022112096003722
[27] DAVANLOU A, LEE J D, BASU S, et al. Effect of viscosity and surface tension on breakup and coalescence of bicomponent sprays [J]. Chemical Engineering Science, 2015, 131: 243 − 255. doi: 10.1016/j.ces.2015.03.057
[28] TSOURIS C, TAVLARIDES L L. Breakage and coalescence models for drops in turbulent dispersions [J]. AIChE Journal, 1994, 40(3): 395 − 406. doi: 10.1002/aic.690400303
[29] O'ROURKE P J. Collective drop effects on vaporizing liquid sprays [D]. Princeton: Princeton University, 1981.
[30] BIRKHOFF G. Hydrodynamics [M]. Princeton University Press, 2015: 29 − 30.
[31] Fluent A. Ansys fluent theory guide [S]. USA: Ansys Inc., 2023: 447 − 448.
[32] HEWITT G F, GOVAN A H. Phenomenological modelling of non-equilibrium flows with phase change [J]. International Journal of Heat and Mass Transfer, 1990, 33(2): 229 − 242. doi: 10.1016/0017-9310(90)90094-B
[33] STANTON D W, RUTLAND C J. Multi-dimensional modeling of thin liquid films and spray-wall interactions resulting from impinging sprays [J]. International Journal of Heat and Mass Transfer, 1998, 41(20): 3037 − 3054. doi: 10.1016/S0017-9310(98)00054-4
[34] WANG Z Y, LIU H, ZHANG Z N, et al. Research on the effects of liquid viscosity on droplet size in vertical gas-liquid annular flows [J]. Chemical Engineering Science, 2020, 220: 115621. doi: 10.1016/j.ces.2020.115621
[35] HAY K J, LIU Z C, HANRATTY T J. Relation of deposition to drop size when the rate law is nonlinear [J]. International Journal of Multiphase Flow, 1996, 22(5): 829 − 848. doi: 10.1016/0301-9322(96)00029-8
[36] TATTERSON D F, DALLMAN J C, HANRATTY T J. Drop sizes in annular gas‐liquid flows [J]. AIChE Journal, 1977, 23(1): 68 − 76. doi: 10.1002/aic.690230112
[37] FORE L B, DUKLER A E. The distribution of drop size and velocity in gas-liquid annular flow [J]. International Journal of Multiphase Flow, 1995, 21(2): 137 − 149. doi: 10.1016/0301-9322(94)00061-N
[38] OWEN D J. An experimental and theoretical analysis of equilibrium annular flow [D]. Birmingham: University of Birmingham, 1986.
[39] SAWANT P, ISHII M, MORI M. Droplet entrainment correlation in vertical upward co-current annular two-phase flow [J]. Nuclear Engineering and Design, 2008, 238(6): 1342 − 1352. doi: 10.1016/j.nucengdes.2007.10.005
[40] ALAMU M B, AZZOPARDI B J. Simultaneous investigation of entrained liquid fraction, liquid film thickness and pressure drop in vertical annular flow [J]. Journal of Energy Resources Technology, 2011, 133(2): 023103. doi: 10.1115/1.4004265
[41] SCHUBRING D, ASHWOOD A C, SHEDD T A, et al. Planar laser-induced fluorescence (PLIF) measurements of liquid film thickness in annular flow. Part I: Methods and data [J]. International Journal of Multiphase Flow, 2010, 36(10): 815 − 824. doi: 10.1016/j.ijmultiphaseflow.2010.05.007
[42] ZHANG R, DING M Y. Thin liquid film method for analyzing gas–liquid annular flow in nonstraight pipe components [J]. Nuclear Engineering and Design, 2024, 423: 113199. doi: 10.1016/j.nucengdes.2024.113199