全轮对曲线通过时的瞬态滚动接触行为模拟研究

许黎明, 刘超, 赵鑫, 温泽峰

许黎明, 刘超, 赵鑫, 温泽峰. 全轮对曲线通过时的瞬态滚动接触行为模拟研究[J]. 工程力学, 2019, 36(11): 203-211. DOI: 10.6052/j.issn.1000-4750.2018.11.0593
引用本文: 许黎明, 刘超, 赵鑫, 温泽峰. 全轮对曲线通过时的瞬态滚动接触行为模拟研究[J]. 工程力学, 2019, 36(11): 203-211. DOI: 10.6052/j.issn.1000-4750.2018.11.0593
XU Li-ming, LIU Chao, ZHAO Xin, WEN Ze-feng. ANALYSES OF TRANSIENT WHEEL-RAIL ROLLING CONTACT BEHAVIOR DURING CURVING[J]. Engineering Mechanics, 2019, 36(11): 203-211. DOI: 10.6052/j.issn.1000-4750.2018.11.0593
Citation: XU Li-ming, LIU Chao, ZHAO Xin, WEN Ze-feng. ANALYSES OF TRANSIENT WHEEL-RAIL ROLLING CONTACT BEHAVIOR DURING CURVING[J]. Engineering Mechanics, 2019, 36(11): 203-211. DOI: 10.6052/j.issn.1000-4750.2018.11.0593

全轮对曲线通过时的瞬态滚动接触行为模拟研究

基金项目: 国家重点研发计划项目(2016YFB1200501-005);国家自然科学基金项目(51675444);四川省国际科技合作与交流研发项目(2017HH0038);牵引动力国家重点实验室自主课题项目(2017TPL_Z06)
详细信息
    作者简介:

    许黎明(1994-),男,安徽人,硕士生,主要从事轮轨滚动接触力学和轮轨损伤研究(E-mail:master_xuliming@163.com);刘超(1991-),男,江苏人,硕士,主要从事轮轨滚动接触力学和轮轨损伤研究(E-mail:liuchao910826@163.com);温泽峰(1976-),男,广西人,研究员,博士,博导,主要从事轮轨关系和减振降噪研究(E-mail:zefengwen@126.com).

    通讯作者:

    赵鑫(1981-),男,山东人,副研究员,博士,硕导,主要从事轮轨滚动接触力学和轮轨损伤研究(E-mail:xinzhao@home.swjtu.edu.cn).

  • 中图分类号: U211.5

ANALYSES OF TRANSIENT WHEEL-RAIL ROLLING CONTACT BEHAVIOR DURING CURVING

  • 摘要: 采用显式有限元法建立了我国某地铁系统R300 m曲线段的全轮对三维轮轨瞬态滚动接触模型,在时域内数值模拟了轮对曲线通过时的瞬态滚滑行为,详细分析了自由轮对滚过无不平顺的光滑钢轨和单侧钢轨存在波磨时两侧轮轨间的接触力、接触应力、相对滑移和黏滑区分布及摩擦功等结果。相比以往直线轨道的半轮对和全轮对滚动接触模型,该模型将曲线超高、弯曲钢轨、轮对横移及侧滚等考虑在内。光滑轮轨的结果表明:以50 km/h通过曲线时(均衡速度50.42 km/h),外轨磨耗大于内轨,最大磨耗值约为内轨的3.1倍,且集中于轨距角附近;随着横移量的增大,外轨的接触力、接触应力及摩擦功会显著增大;这些与现场观测一致,初步验证了模型的可靠性。存在于单侧钢轨的短波波磨会引起两侧轨头摩擦功的波动,不仅会造成波磨侧轨面的不均匀磨耗,也会引发另一侧钢轨的轻微不均匀磨耗。该文计算工况下,波磨存在于内轨时引起的无波磨侧摩擦功最大波动幅值约为存在于外轨时相应结果的1.9倍,即内轨短波波磨能更有效触发无波磨侧萌生波磨;短波波磨无论发生在内轨还是外轨,两侧摩擦功波动幅值均在40 km/h~50 km/h间某速度下(略低于均衡速度)达到最小值,即波磨发展速率最低。
    Abstract: A 3-D transient wheelset-rail rolling contract model has been developed for a metro in China. The explicit finite element method was used to model the transient rolling contact behavior of a free wheelset passing over a curve of R300 m in the time domain. Focus was placed on the resulting contact forces, stresses, relative slip, stick-slip distributions and friction work applied by the wheel-rail contact. Two cases were considered including smooth rails (without geometry irregularity) and one-side short pitch corrugation. With respect to the previous models of half-wheelset or full-wheelset on tangent tracks, super-elevation, curved rails, lateral shift and roll-over of wheelset, etc. were all taken into account. Results over smooth rails at 50 km/h (the equilibrium speed is 50.42 km/h) have shown that the wear on the outer rail concentrates near the gauge angle and is approximately 3.1 times larger than that on the inner rail; the contact forces, stresses and friction work increase significantly as the lateral shift increases. These results are consistent with on-site observations and provide preliminary validation of the model. The short pitch corrugation on one rail can not only lead to uneven wear on the corrugated rail, but also slight uneven wear on the smooth side. The amplitudes of the frictional work fluctuations on non-corrugated rail resulting from corrugation on the inner is about 1.9 times that from corrugation on the outer one, suggesting that corrugation exiting on the inner rail can trigger the occurrence of corrugation on the smooth side more efficiently. In addition, whether the corrugation is on the inner or outer rail, the amplitude of the frictional work reaches its minimum on both sides at a speed between 40 km/h and 50 km/h (being slightly lower than the equilibrium speed), i.e. the growth rate of corrugation is minimum.
  • [1] 王开云, 翟婉明, 刘建新, 等. 提速列车与曲线轨道的横向相互动力作用研究[J]. 中国铁道科学, 2006, 26(6):38-43. Wang Kaiyun, Zhai Wanming, Liu Jianxin, et al. Research on the lateral dynamic interaction between speed-increased train and curve track[J]. China Railway Science, 2006, 26(6):38-43. (in Chinese)
    [2] 熊嘉阳, 金学松. 铁路曲线钢轨横向凹坑对初始波磨形成的影响[J]. 工程力学, 2006, 23(06):135-141. Xiong Jiayang, Jin Xuesong. Effects of lateral dent on curved rail on rail corrugation[J]. Engineering Mechanics, 2006, 23(06):135-141. (in Chinese)
    [3] Telliskivi T, Olofsson U. Contact mechanics analysis of measured wheel-rail profiles using the finite element method[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2001, 215(2):65-72.
    [4] Sladkowski A, Sitarz M. Analysis of wheel-rail interaction using FE software[J]. Wear, 2005, 258(7):1217-1223.
    [5] 侯传伦. 重载铁路曲线段磨耗状态下轮轨相互作用分析[D]. 成都:西南交通大学, 2009. Hong Chuanlun. Analysis of worn wheel/rail interaction on heavy-haul railway curve[D]. Chengdu:Southwest Jiaotong University, 2009. (in Chinese)
    [6] 常崇义. 有限元轮轨滚动接触理论及其应用研究[D]. 北京:中国铁道科学研究院, 2010. Chang Chongyi. A study on wheel/rail rolling contact theory based on finite element method and its applying[D]. Beijing:China Academy of Railway Sciences, 2010. (in Chinese)
    [7] Zhao X. Dynamic wheel/rail rolling contact at singular defects with application to squats[D]. Delft:Delft University of Technology, 2012.
    [8] 肖乾. 轮轨滚动接触弹塑性分析及疲劳损伤研究[D]. 北京:中国铁道科学研究院, 2012. Xiao Qian. The elasto-plastic analysis and fatigue damage research of wheel/rail rolling contact[D]. Beijing:China academy of railway sciences, 2012. (in Chinese)
    [9] 赵鑫, 温泽峰, 王衡禹, 等. 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报, 2013, 49(18):1-7. Zhao Xin, Wen Zefeng, Wang Hengyu, et al. 3D transient finite element model for high-speed wheel-rail rolling contact and its application[J]. Chinese Journal of Mechanical Engineering, 2013, 49(18):1-7. (in Chinese)
    [10] 宋华, 杨建, 张月, 等. 非线性稳态曲线通过时轮轨滚动接触的数值求解方法[J]. 中国铁道科学, 2015, 36(5):80-85. Song Hua, Yang Jian, Zhang Yue, et al. Numerical solution method for wheel-rail rolling contact of nonlinear steady-state curve negotiating[J]. China Railway Science, 2015, 36(5):80-88. (in Chinese)
    [11] Zhao X, Zhao X, Liu C, et al. A study on dynamic stress intensity factors of rail cracks at high speeds by a 3D explicit finite element model of rolling contact[J]. Wear, 2016, 366-367(11):60-70.
    [12] 赵小罡, 赵鑫, 温泽峰, 等. 轮轨黏着系数对钢轨直裂纹瞬态扩展行为的影响[J]. 工程力学, 2018, 35(5):248-254. Zhao Xiaogang, Zhao Xin, Wen Zefeng, et al. Influence of wheel-rail adhesion coefficient on transient propagation of a vertical rail crack[J]. Engineering Mechanics, 2018, 35(5):248-254. (in Chinese)
    [13] 刘超, 赵鑫, 赵小罡, 等. 单侧钢轨波磨对两侧轮轨瞬态响应的影响分析[J]. 机械工程学报, 2017, 53(22):117-124. Liu Chao, Zhao Xin, Zhao Xiaogang, et al. Analyses of transient wheel-rail interactions excited by unilateral rail corrugation[J]. Chinese Journal of Mechanical Engineering, 2017, 53(22):117-124. (in Chinese)
    [14] Chaar N, Berg M. Simulation of vehicle-track interaction with flexible wheelsets, moving track models and field tests[J]. Vehicle System Dynamics, 2006, 44(Supp1):921-931.
    [15] 罗仁, 石怀龙. 铁道车辆系统动力学及应用[M]. 成都:西南交通大学出版社, 2018. Luo Ren, Shi Huailong. Dynamics of railway vehicle systems and application[M]. Chengdu:Southwest Jiaotong University Press, 2018. (in Chinese)
    [16] 刘超, 赵鑫, 安博洋, 等. 钢轨短波长波磨处的高速滚动接触分析[J]. 润滑与密封, 2015, 40(8):40-46. Liu Chao, Zhao Xin, An Boyang, et al. Study on high-speed wheel-rail rolling contract on short-pitch rail corrugation[J]. Lubrication Engineering, 2015, 40(8):40-46. (in Chinese)
  • 期刊类型引用(9)

    1. 赵鑫,黄双超,杨吉忠,Zhen YANG,温泽峰. 更高速下轮轨瞬态“滚-滑-跳”接触行为及中/短波不平顺临界限值研究. 铁道学报. 2024(10): 21-32 . 百度学术
    2. 赵长雨,赵鑫,王鹏,沈正行,温泽峰. 考虑研磨子——车轮和轮轨作用的城际动车组车轮磨耗预测. 工程力学. 2023(01): 229-237 . 本站查看
    3. 沈正行,赵鑫,王平,刘顺稳,温泽峰. 波磨激励下的地铁钢轨滚动接触疲劳裂纹瞬态扩展行为. 铁道科学与工程学报. 2023(12): 4552-4561 . 百度学术
    4. 王志强,雷震宇. 地铁小半径曲线钢弹簧浮置板轨道钢轨波磨成因分析. 中国机械工程. 2023(24): 2899-2908 . 百度学术
    5. 黎嘉欣,陶功权,刘希政,梁红琴,温泽峰. 基于两种轨道线路建模方法的地铁车轮磨耗预测对比分析. 工程力学. 2022(06): 226-235 . 本站查看
    6. 罗易飞,赵鑫,周志军,尹利钧,温泽峰,杨吉忠. 缩尺车轮-环轨试验台轮轨静态接触相似性研究. 中南大学学报(自然科学版). 2022(10): 3901-3911 . 百度学术
    7. 黄双超,赵鑫,张笃超,许黎明,温泽峰,金学松. 高阶多边形车轮的瞬态磨耗行为分析. 中南大学学报(自然科学版). 2021(02): 648-658 . 百度学术
    8. 朱海燕,袁遥,肖乾,黎洁,郑宇轩. 钢轨波磨研究进展. 交通运输工程学报. 2021(03): 110-133 . 百度学术
    9. 周墨臻,张丙印,张顶立,方黄城. 基于三场变分原理的对偶mortar有限元法. 工程力学. 2020(06): 51-59 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  497
  • HTML全文浏览量:  102
  • PDF下载量:  120
  • 被引次数: 17
出版历程
  • 收稿日期:  2018-11-02
  • 修回日期:  2019-03-09
  • 刊出日期:  2019-11-24

目录

    /

    返回文章
    返回