梁端弹簧型自复位钢筋混凝土框架基于性能的抗震设计方法

曾敏茹, 鲁亮, 夏婉秋, 胡宇飞

曾敏茹, 鲁亮, 夏婉秋, 胡宇飞. 梁端弹簧型自复位钢筋混凝土框架基于性能的抗震设计方法[J]. 工程力学, 2024, 41(S): 266-274. DOI: 10.6052/j.issn.1000-4750.2023.05.S041
引用本文: 曾敏茹, 鲁亮, 夏婉秋, 胡宇飞. 梁端弹簧型自复位钢筋混凝土框架基于性能的抗震设计方法[J]. 工程力学, 2024, 41(S): 266-274. DOI: 10.6052/j.issn.1000-4750.2023.05.S041
ZENG Min-ru, LU Liang, XIA Wan-qiu, HU Yu-fei. PERFORMANCE-BASED SEISMIC DESIGN METHOD OF A REINFORCED CONCRETE SELF-CENTERING FRAME WITH BEAM-END SPRING JOINTS[J]. Engineering Mechanics, 2024, 41(S): 266-274. DOI: 10.6052/j.issn.1000-4750.2023.05.S041
Citation: ZENG Min-ru, LU Liang, XIA Wan-qiu, HU Yu-fei. PERFORMANCE-BASED SEISMIC DESIGN METHOD OF A REINFORCED CONCRETE SELF-CENTERING FRAME WITH BEAM-END SPRING JOINTS[J]. Engineering Mechanics, 2024, 41(S): 266-274. DOI: 10.6052/j.issn.1000-4750.2023.05.S041

梁端弹簧型自复位钢筋混凝土框架基于性能的抗震设计方法

基金项目: 国家自然科学基金项目(51678453)
详细信息
    作者简介:

    曾敏茹(1999−),女,四川人,硕士生,主要从事工程结构抗震研究(E-mail: zengminru@tongji.edu.cn)

    夏婉秋(1995−),女,安徽人,博士生,主要从事工程结构抗震研究(E-mail: xiawanqiu0902@163.com)

    胡宇飞(1993−),男,江苏人,工程师,硕士生,主要从事市政工程设计研究(E-mail: huyufei@smedi.com)

    通讯作者:

    鲁 亮(1969−),男,安徽人,副教授,博士,主要从事工程结构抗震和试验技术研究(E-mail: 95010@tongji.edu.cn)

  • 中图分类号: TU352.1+1;TU375.4

PERFORMANCE-BASED SEISMIC DESIGN METHOD OF A REINFORCED CONCRETE SELF-CENTERING FRAME WITH BEAM-END SPRING JOINTS

  • 摘要:

    梁端弹簧型自复位框架(self-centering frame, SCF)结构作为一种新型抗震结构体系,通过梁柱节点铰接构造来使整体结构抗侧刚度弱化,并在梁端设置钢板弹簧来给节点设定确定的转动刚度,从而达到地震作用下结构减震和震后结构自复位的目标。在已有理论和试验研究的基础上,对梁端弹簧型自复位框架的抗震设计方法进行了研究,并给出了此类结构的抗震性能水准以及结构的抗震设计流程。结合一幢三层自复位耗能框架结构的设计实例,进行基于性能的结构抗震设计,通过有限元模拟对该结构的动力响应与常规框架进行比较分析。结果表明:梁端弹簧型自复位耗能框架结构具有较小的加速度响应和层剪力响应,以及良好的变形性能。研究结果表明,梁端弹簧型自复位框架结构具有优越的抗震性能。

    Abstract:

    As a new type of seismic structural system, self-centering frame (SCF) structure with beam-end spring joints weakens the lateral stiffness of the entire structure by adopting hinged beam-column joints. By setting leaf spring at the beam end, the rotational stiffness of joints can be quantificationally determined to achieve the goal of structural vibration reduction under earthquake and structural self-centering. Based on existing theoretical and experimental research, the seismic design method of SCF with beam-end spring joints is studied. Seismic performance level and structural seismic design process of this kind of structure are given. Combined with the design case of a three-story SCF with beam-end spring joints, the performance-based seismic design is carried out, and the dynamic response of the frame is compared with that of a conventional reinforced concrete frame (RCF) through finite element simulation. The analysis results show that SCF structure with beam-end spring joints has smaller acceleration response and shear response, as well as good deformation performance, which demonstrates that SCF with beam-end spring joints has superior seismic performance.

  • 图  1   梁端弹簧型SCF节点示意图

    Figure  1.   Schematic diagram of SCF with beam-end spring joints

    图  2   剪切键构造示意图

    Figure  2.   Shear key diagram

    图  3   钢板弹簧示意图

    Figure  3.   Schematic diagram of leaf spring

    图  4   基于性能设计的层间位移极限状态

    Figure  4.   Limit states of inter-story drift ratio based on performance design

    图  5   梁端弹簧型SCF结构的设计流程图

    Figure  5.   Design flow chart of SCF with beam-end spring joints

    图  6   框架结构平面布置图与计算单元选取 /mm

    Figure  6.   Layout and calculation unit selection of frame structure

    图  7   有限元模型

    Figure  7.   Finite element models

    图  8   地震波加速度反应谱

    Figure  8.   Earthquake acceleration response spectrum

    图  9   El Centro-EW波作用下结构层间位移响应

    Figure  9.   Inter-story drifts of structures under El Centro-EW earthquake

    图  10   El Centro-EW波作用下结构层间剪力

    Figure  10.   Inter-story shear forces of structures under El Centro-EW earthquake

    图  11   El Centro-EW波作用下加速度响应

    Figure  11.   Acceleration response under El Centro-EW earthquake

    表  1   FEMA356不同性能要求的层间位移角

    Table  1   Inter-story drifts for different performance requirements in FEMA356

    结构类型立即使用(IO)生命安全(LS)防止倒塌(CP)
    混凝土框架1/1001/501/25
    钢框架1/1431/401/20
    带斜撑钢框架1/2001/671/50
    混凝土剪力墙1/2001/1001/50
    下载: 导出CSV

    表  2   GB 50011层间位移角限值

    Table  2   Inter-story drift limits in Chinese seismic design code

    结构类型弹性变形弹塑性变形
    钢筋混凝土框架结构1/5501/50
    钢筋混凝土框架-抗震墙、板柱-抗震墙、
    框架-核心筒
    1/8001/100
    钢筋混凝土抗震墙、筒中筒1/10001/100
    钢筋混凝土框支层1/10001/120
    多、高层钢结构1/2501/50
    下载: 导出CSV

    表  3   水平向减震系数分档

    Table  3   Horizontal damping coefficient grading

    设防烈度(设计基本
    地震加速度)
    水平向减震系数β
    0.53≥β≥0.40 0.40>β>0.27 β≤0.27
    9(0.40 g) 8(0.30 g) 8(0.20 g) 7(0.15 g)
    8(0.30 g) 8(0.20 g) 7(0.15 g) 7(0.10 g)
    8(0.20 g) 7(0.15 g) 7(0.10 g) 7(0.10 g)
    7(0.15 g) 7(0.10 g) 7(0.10 g) 6(0.05 g)
    7(0.10 g) 7(0.10 g) 6(0.05 g) 6(0.05 g)
    下载: 导出CSV

    表  4   钢板弹簧及金属阻尼器参数

    Table  4   Parameters of leaf spring and metal damper

    结构 钢板弹簧转动刚度/((kN·m)/rad) 阻尼器
    梁柱中
    节点
    梁柱边
    节点
    柱脚
    节点
    初始刚度/
    (kN/mm)
    屈服力/
    kN
    屈服位移/
    mm
    有控结构 800 400 800 12.5 30 2.4
    无控结构 800 400 800
    下载: 导出CSV

    表  5   地震波信息

    Table  5   Information of seismic wave

    地震波 震级 时间 PGA/gal 持续时间/s 场地
    El Centro-EW 7.1 1940 210.1 54.38
    Taft-NS 7.7 1957 152.7 53.38
    SH09-1 40.00
    下载: 导出CSV

    表  6   结构前3阶自振周期

    Table  6   The first three natural vibration periods

    结构类型 三阶自振周
    T1/s T2/s T3/s
    常规框架 0.3130 0.0964 0.0549
    无控SCF 3.1027 0.2349 0.0747
    有控SCF 1.6917 0.2108 0.0729
    下载: 导出CSV

    表  7   地震动下的位移响应

    Table  7   Displacement responses under ground motions

    峰值地面
    加速度/g
    地震波El Centro-EWTaft-NSSH09-1
    楼层F1/mmF2/mmF3/mmF1/mmF2/mmF3/mmF1/mmF2/mmF3/mm
    0.07常规框架3.743.882.013.633.591.573.493.552.03
    无控SCF25.6324.8423.6723.4121.5521.7123.1122.2923.96
    有控SCF13.0112.4212.3411.2710.7210.2215.6915.5114.76
    0.20常规框架10.106.902.5012.6010.894.1010.1011.806.20
    无控SCF64.2161.7261.3350.1649.6849.6165.6667.3965.86
    有控SCF35.7134.5434.2430.1028.3827.6746.8947.9246.04
    0.40常规框架53.4946.1117.0032.7834.6217.2975.6945.8614.66
    无控SCF141.50140.90142.3085.9083.7084.20179.70182.40182.80
    有控SCF88.4587.3789.6845.1042.9043.00112.30113.20114.00
    下载: 导出CSV

    表  8   地震动下的层间剪力响应

    Table  8   Inter-story shear responses under ground motions

    峰值地面加速度/g 地震波 El Centro-EW Taft-NS SH09-1
    楼层 F1/kN F2/kN F3/kN F1/kN F2/kN F3/kN F1/kN F2/kN F3/kN
    0.07 常规框架 395.3 283.2 148.9 379.6 263.0 147.5 318.2 262.8 157.3
    无控SCF 125.2 64.3 59.1 97.6 61.0 38.8 112.5 78.4 65.1
    有控SCF 138.0 77.0 65.7 106.3 64.9 43.7 122.9 89.3 76.5
    0.20 常规框架 855.2 519.9 296.1 710.9 430.8 253.7 740.7 476.8 264.1
    无控SCF 289.6 176.4 119.7 263.4 172.0 114.2 276.8 206.2 152.5
    有控SCF 277.8 172.8 115.2 250.8 164.7 105.6 267.9 198.5 145.7
    0.40 常规框架 1078 814.8 488.6 944.1 765.9 466.4 814.5 641.9 481.6
    无控SCF 458.3 307.7 176.4 419.3 305.0 152.6 431.6 345.1 289.3
    有控SCF 398.6 281.4 163.9 390.3 286.4 129.6 410.5 322.7 250.7
    下载: 导出CSV

    表  9   地震动下的加速度响应K

    Table  9   Acceleration responses K under ground motions

    响应参数 峰值地面加速度/g 地震波 El Centro-EW Taft-NS SH09-1
    楼层 F1 F2 F3 F1 F2 F3 F1 F2 F3
    加速度响应/(m∙s−2) 0.07 常规框架 1.82 2.02 2.39 1.76 2.05 2.53 1.51 1.92 2.47
    无控SCF 1.02 0.73 1.22 1.19 0.65 1.12 1.28 0.96 1.47
    有控SCF 1.08 0.82 1.25 1.28 0.77 1.30 1.33 1.05 1.58
    0.20 常规框架 3.62 3.81 4.03 3.92 4.76 5.85 3.92 4.76 5.85
    无控SCF 2.89 2.06 3.18 3.66 2.41 3.80 3.66 2.41 3.80
    有控SCF 2.70 1.94 2.92 3.44 2.38 3.68 3.44 2.38 3.68
    0.40 常规框架 5.80 8.39 9.56 5.73 6.93 8.59 5.21 6.95 7.21
    无控SCF 4.91 3.50 3.98 6.82 4.55 6.73 6.92 4.88 6.90
    有控SCF 4.75 3.09 4.41 6.77 4.34 6.78 6.42 4.43 6.75
    动力放大系数K 0.07 常规框架 2.60 2.89 3.41 2.51 2.93 3.61 2.16 2.74 3.53
    无控SCF 1.46 1.04 1.74 1.70 0.93 1.60 1.83 1.37 2.10
    有控SCF 1.54 1.17 1.79 1.83 1.10 1.86 1.90 1.50 2.26
    0.20 常规框架 1.81 1.91 2.02 1.96 2.38 2.93 1.96 2.38 2.93
    无控SCF 1.45 1.03 1.59 1.83 1.21 1.90 1.83 1.21 1.90
    有控SCF 1.35 0.97 1.46 1.72 1.19 1.84 1.72 1.19 1.84
    0.40 常规框架 1.45 2.10 2.39 1.43 1.73 2.15 1.30 1.74 1.80
    无控SCF 1.23 0.88 1.00 1.71 1.14 1.68 1.73 1.22 1.73
    有控SCF 1.19 0.77 1.10 1.69 1.09 1.70 1.61 1.11 1.69
    下载: 导出CSV
  • [1]

    PRIESTLEY M J N. Overview of PRESSS research program [J]. PCI Journal, 1991, 36(4): 50 − 57. doi: 10.15554/pcij.07011991.50.57

    [2]

    PRIESTLEY M J N, TAO J R. Seismic response of precast prestressed concrete frames with partially debonded tendons [J]. PCI Journal, 1993, 38(1): 58 − 69. doi: 10.15554/pcij.01011993.58.69

    [3]

    WOLSKI M, RICLES J M, SAUSE R. Experimental study of a self-centering beam–column connection with bottom flange friction device [J]. Journal of Structural Engineering, 2009, 135(5): 479 − 488. doi: 10.1061/(ASCE)ST.1943-541X.0000006

    [4]

    CHOU C C, LAI Y J. Post-tensioned self-centering moment connections with beam bottom flange energy dissipators [J]. Journal of Constructional Steel Research, 2009, 65(10/11): 1931 − 1941.

    [5] 吕西林, 崔晔, 刘兢兢. 自复位钢筋混凝土框架结构振动台试验研究 [J]. 建筑结构学报, 2014, 35(1): 19 − 26.

    LYU Xilin, CUI Ye, LIU Jingjing. Shaking table test of a self-centering reinforced concrete frame [J]. Journal of Building Structures, 2014, 35(1): 19 − 26. (in Chinese)

    [6] 蔡小宁, 孟少平, 孙巍巍. 自复位预制框架边节点组件受力性能试验研究 [J]. 工程力学, 2014, 31(3): 160 − 167. doi: 10.6052/j.issn.1000-4750.2012.10.0764

    CAI Xiaoning, MENG Shaoping, SUN Weiwei. Experimental study on performance of components of the exterior self-centering post-tensioned precast connections [J]. Engineering Mechanics, 2014, 31(3): 160 − 167. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.10.0764

    [7] 鲁亮, 江乐, 李鸿, 等. 柱端铰型受控摇摆式钢筋混凝土框架抗震性能的振动台试验研究 [J]. 振动与冲击, 2016, 35(4): 193 − 198, 216.

    LU Liang, JIANG Le, LI Hong, et al. Shaking table tests for aseismic performance of a controllable rocking reinforced concrete frame with column-end-hinge joints [J]. Journal of Vibration and Shock, 2016, 35(4): 193 − 198, 216. (in Chinese)

    [8] 鲁亮, 叶雨立, 夏婉秋, 等. 体外预应力自复位钢筋混凝土框架抗震性能振动台试验研究 [J]. 土木工程学报, 2020, 53(增刊2): 68 − 73, 108.

    LU Liang, YE Yuli, XIA Wanqiu, et al. Study on the seismic performance of a 3D external prestressed self-centering reinforced concrete frame by shaking table test [J]. China Civil Engineering Journal, 2020, 53(Suppl 2): 68 − 73, 108. (in Chinese)

    [9] 鲁亮, 陈凯芳, 胡宇飞. 梁端弹簧自复位框架耗能节点试验研究 [J]. 结构工程师, 2019, 35(1): 122 − 130.

    LU Liang, CHEN Kaifang, HU Yufei. Experimental research on the energy-dissipating self-centering frame joint with beam-end spring [J]. Structural Engineers, 2019, 35(1): 122 − 130. (in Chinese)

    [10] 鲁亮, 汪磊, 胡宇飞. 梁端弹簧型自复位耗能框架节点刚度取值研究 [J]. 动力学与控制学报, 2020, 18(5): 22 − 28.

    LU Liang, WANG Lei, HU Yufei. Selection of joint stiffness for an energy-dissipating self-centering frame joint with beam-end spring [J]. Journal of Dynamics and Control, 2020, 18(5): 22 − 28. (in Chinese)

    [11]

    BERTERO V V. Major issue and future directions in earthquake-resistant design [C]// Proceedings of the 10th World Conference on Earthquake Engineering. Madrid, Spain: International Association for Earthquake Engineering, 1992: 6407 − 6444.

    [12] 蒋欢军, 郑建波, 张桦. 基于位移的抗震设计研究进展[J]. [J]. 工业建筑, 2008, 38(7): 1 − 5, 15.

    JIANG Huanjun, ZHENG Jianbo, ZHANG Ye. State of the art of displacement-based seismic design [J]. Industrial Construction, 2008, 38(7): 1 − 5, 15. (in Chinese)

    [13] 门进杰, 霍文武, 兰涛, 等. 基于刚度和位移带可更换构件RCS混合框架结构抗震设计方法 [J]. 工程力学, 2021, 38(4): 169 − 178. doi: 10.6052/j.issn.1000-4750.2020.06.0370

    MEN Jinjie, HUO Wenwu, LAN Tao, et al. Seismic design method of RCS hybrid frame structure with replaceable members based on stiffness and displacement [J]. Engineering Mechanics, 2021, 38(4): 169 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0370

    [14] 王玉奎, 刘哲锋, 张丹, 等. RC梁构件基于能量的抗震设计方法研究 [J]. 工程力学, 2023, 40(11): 218 − 226. doi: 10.6052/j.issn.1000-4750.2022.04.0278

    WANG Yukui, LIU Zhefeng, ZHANG Dan, et al. Research on energy based seismic design method of RC beam members [J]. Engineering Mechanics, 2023, 40(11): 218 − 226. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.04.0278

    [15] 门进杰, 史庆轩, 周琦. 框架结构基于性能的抗震设防目标和性能指标的量化 [J]. 土木工程学报, 2008, 41(9): 76 − 82.

    MEN Jinjie, SHI Qingxuan, ZHOU Qi. Performance-based seismic fortification criterion and quantified performance index for reinforced concrete frame structures [J]. China Civil Engineering Journal, 2008, 41(9): 76 − 82. (in Chinese)

    [16]

    FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings [S]. Washington: Federal Emergency Management Agency, 2000.

    [17] GB 50011−2010, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2010.

    GB 50011−2010, Code for seismic design of building [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)

    [18] 吴晓涵. NosaCAD与ABAQUS和PERFORM-3D弹塑性模型转换及分析应用 [J]. 建筑结构, 2012, 42(增刊 2): 207 − 212.

    WU Xiaohan. Model transformation from NosaCAD to ABAQUS and PERFORM-3D and nonlinear structure analysis by these software [J]. Building Structure, 2012, 42(Suppl 2): 207 − 212. (in Chinese)

图(11)  /  表(9)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  44
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-28
  • 修回日期:  2024-01-04
  • 网络出版日期:  2024-01-28

目录

    /

    返回文章
    返回