Abstract:
As a new type of seismic structural system, self-centering frame (SCF) structure with beam-end spring joints weakens the lateral stiffness of the entire structure by adopting hinged beam-column joints. By setting leaf spring at the beam end, the rotational stiffness of joints can be quantificationally determined to achieve the goal of structural vibration reduction under earthquake and structural self-centering. Based on existing theoretical and experimental research, the seismic design method of SCF with beam-end spring joints is studied. Seismic performance level and structural seismic design process of this kind of structure are given. Combined with the design case of a three-story SCF with beam-end spring joints, the performance-based seismic design is carried out, and the dynamic response of the frame is compared with that of a conventional reinforced concrete frame (RCF) through finite element simulation. The analysis results show that SCF structure with beam-end spring joints has smaller acceleration response and shear response, as well as good deformation performance, which demonstrates that SCF with beam-end spring joints has superior seismic performance.