PERFORMANCE-BASED SEISMIC DESIGN METHOD OF A REINFORCED CONCRETE SELF-CENTERING FRAME WITH BEAM-END SPRING JOINTS
-
摘要:
梁端弹簧型自复位框架(self-centering frame, SCF)结构作为一种新型抗震结构体系,通过梁柱节点铰接构造来使整体结构抗侧刚度弱化,并在梁端设置钢板弹簧来给节点设定确定的转动刚度,从而达到地震作用下结构减震和震后结构自复位的目标。在已有理论和试验研究的基础上,对梁端弹簧型自复位框架的抗震设计方法进行了研究,并给出了此类结构的抗震性能水准以及结构的抗震设计流程。结合一幢三层自复位耗能框架结构的设计实例,进行基于性能的结构抗震设计,通过有限元模拟对该结构的动力响应与常规框架进行比较分析。结果表明:梁端弹簧型自复位耗能框架结构具有较小的加速度响应和层剪力响应,以及良好的变形性能。研究结果表明,梁端弹簧型自复位框架结构具有优越的抗震性能。
-
关键词:
- 梁端弹簧型自复位框架 /
- 基于性能的抗震设计方法 /
- 动力响应 /
- 抗震性能 /
- 有限元模拟
Abstract:As a new type of seismic structural system, self-centering frame (SCF) structure with beam-end spring joints weakens the lateral stiffness of the entire structure by adopting hinged beam-column joints. By setting leaf spring at the beam end, the rotational stiffness of joints can be quantificationally determined to achieve the goal of structural vibration reduction under earthquake and structural self-centering. Based on existing theoretical and experimental research, the seismic design method of SCF with beam-end spring joints is studied. Seismic performance level and structural seismic design process of this kind of structure are given. Combined with the design case of a three-story SCF with beam-end spring joints, the performance-based seismic design is carried out, and the dynamic response of the frame is compared with that of a conventional reinforced concrete frame (RCF) through finite element simulation. The analysis results show that SCF structure with beam-end spring joints has smaller acceleration response and shear response, as well as good deformation performance, which demonstrates that SCF with beam-end spring joints has superior seismic performance.
-
-
表 1 FEMA356不同性能要求的层间位移角
Table 1 Inter-story drifts for different performance requirements in FEMA356
结构类型 立即使用(IO) 生命安全(LS) 防止倒塌(CP) 混凝土框架 1/100 1/50 1/25 钢框架 1/143 1/40 1/20 带斜撑钢框架 1/200 1/67 1/50 混凝土剪力墙 1/200 1/100 1/50 表 2 GB 50011层间位移角限值
Table 2 Inter-story drift limits in Chinese seismic design code
结构类型 弹性变形 弹塑性变形 钢筋混凝土框架结构 1/550 1/50 钢筋混凝土框架-抗震墙、板柱-抗震墙、
框架-核心筒1/800 1/100 钢筋混凝土抗震墙、筒中筒 1/1000 1/100 钢筋混凝土框支层 1/1000 1/120 多、高层钢结构 1/250 1/50 表 3 水平向减震系数分档
Table 3 Horizontal damping coefficient grading
设防烈度(设计基本
地震加速度)水平向减震系数β 0.53≥β≥0.40 0.40>β>0.27 β≤0.27 9(0.40 g) 8(0.30 g) 8(0.20 g) 7(0.15 g) 8(0.30 g) 8(0.20 g) 7(0.15 g) 7(0.10 g) 8(0.20 g) 7(0.15 g) 7(0.10 g) 7(0.10 g) 7(0.15 g) 7(0.10 g) 7(0.10 g) 6(0.05 g) 7(0.10 g) 7(0.10 g) 6(0.05 g) 6(0.05 g) 表 4 钢板弹簧及金属阻尼器参数
Table 4 Parameters of leaf spring and metal damper
结构 钢板弹簧转动刚度/((kN·m)/rad) 阻尼器 梁柱中
节点梁柱边
节点柱脚
节点初始刚度/
(kN/mm)屈服力/
kN屈服位移/
mm有控结构 800 400 800 12.5 30 2.4 无控结构 800 400 800 − − − 表 5 地震波信息
Table 5 Information of seismic wave
地震波 震级 时间 PGA/gal 持续时间/s 场地 El Centro-EW 7.1 1940 210.1 54.38 Ⅱ Taft-NS 7.7 1957 152.7 53.38 Ⅲ SH09-1 — — — 40.00 Ⅳ 表 6 结构前3阶自振周期
Table 6 The first three natural vibration periods
结构类型 三阶自振周 T1/s T2/s T3/s 常规框架 0.3130 0.0964 0.0549 无控SCF 3.1027 0.2349 0.0747 有控SCF 1.6917 0.2108 0.0729 表 7 地震动下的位移响应
Table 7 Displacement responses under ground motions
峰值地面
加速度/g地震波 El Centro-EW Taft-NS SH09-1 楼层 F1/mm F2/mm F3/mm F1/mm F2/mm F3/mm F1/mm F2/mm F3/mm 0.07 常规框架 3.74 3.88 2.01 3.63 3.59 1.57 3.49 3.55 2.03 无控SCF 25.63 24.84 23.67 23.41 21.55 21.71 23.11 22.29 23.96 有控SCF 13.01 12.42 12.34 11.27 10.72 10.22 15.69 15.51 14.76 0.20 常规框架 10.10 6.90 2.50 12.60 10.89 4.10 10.10 11.80 6.20 无控SCF 64.21 61.72 61.33 50.16 49.68 49.61 65.66 67.39 65.86 有控SCF 35.71 34.54 34.24 30.10 28.38 27.67 46.89 47.92 46.04 0.40 常规框架 53.49 46.11 17.00 32.78 34.62 17.29 75.69 45.86 14.66 无控SCF 141.50 140.90 142.30 85.90 83.70 84.20 179.70 182.40 182.80 有控SCF 88.45 87.37 89.68 45.10 42.90 43.00 112.30 113.20 114.00 表 8 地震动下的层间剪力响应
Table 8 Inter-story shear responses under ground motions
峰值地面加速度/g 地震波 El Centro-EW Taft-NS SH09-1 楼层 F1/kN F2/kN F3/kN F1/kN F2/kN F3/kN F1/kN F2/kN F3/kN 0.07 常规框架 395.3 283.2 148.9 379.6 263.0 147.5 318.2 262.8 157.3 无控SCF 125.2 64.3 59.1 97.6 61.0 38.8 112.5 78.4 65.1 有控SCF 138.0 77.0 65.7 106.3 64.9 43.7 122.9 89.3 76.5 0.20 常规框架 855.2 519.9 296.1 710.9 430.8 253.7 740.7 476.8 264.1 无控SCF 289.6 176.4 119.7 263.4 172.0 114.2 276.8 206.2 152.5 有控SCF 277.8 172.8 115.2 250.8 164.7 105.6 267.9 198.5 145.7 0.40 常规框架 1078 814.8 488.6 944.1 765.9 466.4 814.5 641.9 481.6 无控SCF 458.3 307.7 176.4 419.3 305.0 152.6 431.6 345.1 289.3 有控SCF 398.6 281.4 163.9 390.3 286.4 129.6 410.5 322.7 250.7 表 9 地震动下的加速度响应K值
Table 9 Acceleration responses K under ground motions
响应参数 峰值地面加速度/g 地震波 El Centro-EW Taft-NS SH09-1 楼层 F1 F2 F3 F1 F2 F3 F1 F2 F3 加速度响应/(m∙s−2) 0.07 常规框架 1.82 2.02 2.39 1.76 2.05 2.53 1.51 1.92 2.47 无控SCF 1.02 0.73 1.22 1.19 0.65 1.12 1.28 0.96 1.47 有控SCF 1.08 0.82 1.25 1.28 0.77 1.30 1.33 1.05 1.58 0.20 常规框架 3.62 3.81 4.03 3.92 4.76 5.85 3.92 4.76 5.85 无控SCF 2.89 2.06 3.18 3.66 2.41 3.80 3.66 2.41 3.80 有控SCF 2.70 1.94 2.92 3.44 2.38 3.68 3.44 2.38 3.68 0.40 常规框架 5.80 8.39 9.56 5.73 6.93 8.59 5.21 6.95 7.21 无控SCF 4.91 3.50 3.98 6.82 4.55 6.73 6.92 4.88 6.90 有控SCF 4.75 3.09 4.41 6.77 4.34 6.78 6.42 4.43 6.75 动力放大系数K 0.07 常规框架 2.60 2.89 3.41 2.51 2.93 3.61 2.16 2.74 3.53 无控SCF 1.46 1.04 1.74 1.70 0.93 1.60 1.83 1.37 2.10 有控SCF 1.54 1.17 1.79 1.83 1.10 1.86 1.90 1.50 2.26 0.20 常规框架 1.81 1.91 2.02 1.96 2.38 2.93 1.96 2.38 2.93 无控SCF 1.45 1.03 1.59 1.83 1.21 1.90 1.83 1.21 1.90 有控SCF 1.35 0.97 1.46 1.72 1.19 1.84 1.72 1.19 1.84 0.40 常规框架 1.45 2.10 2.39 1.43 1.73 2.15 1.30 1.74 1.80 无控SCF 1.23 0.88 1.00 1.71 1.14 1.68 1.73 1.22 1.73 有控SCF 1.19 0.77 1.10 1.69 1.09 1.70 1.61 1.11 1.69 -
[1] PRIESTLEY M J N. Overview of PRESSS research program [J]. PCI Journal, 1991, 36(4): 50 − 57. doi: 10.15554/pcij.07011991.50.57
[2] PRIESTLEY M J N, TAO J R. Seismic response of precast prestressed concrete frames with partially debonded tendons [J]. PCI Journal, 1993, 38(1): 58 − 69. doi: 10.15554/pcij.01011993.58.69
[3] WOLSKI M, RICLES J M, SAUSE R. Experimental study of a self-centering beam–column connection with bottom flange friction device [J]. Journal of Structural Engineering, 2009, 135(5): 479 − 488. doi: 10.1061/(ASCE)ST.1943-541X.0000006
[4] CHOU C C, LAI Y J. Post-tensioned self-centering moment connections with beam bottom flange energy dissipators [J]. Journal of Constructional Steel Research, 2009, 65(10/11): 1931 − 1941.
[5] 吕西林, 崔晔, 刘兢兢. 自复位钢筋混凝土框架结构振动台试验研究 [J]. 建筑结构学报, 2014, 35(1): 19 − 26. LYU Xilin, CUI Ye, LIU Jingjing. Shaking table test of a self-centering reinforced concrete frame [J]. Journal of Building Structures, 2014, 35(1): 19 − 26. (in Chinese)
[6] 蔡小宁, 孟少平, 孙巍巍. 自复位预制框架边节点组件受力性能试验研究 [J]. 工程力学, 2014, 31(3): 160 − 167. doi: 10.6052/j.issn.1000-4750.2012.10.0764 CAI Xiaoning, MENG Shaoping, SUN Weiwei. Experimental study on performance of components of the exterior self-centering post-tensioned precast connections [J]. Engineering Mechanics, 2014, 31(3): 160 − 167. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.10.0764
[7] 鲁亮, 江乐, 李鸿, 等. 柱端铰型受控摇摆式钢筋混凝土框架抗震性能的振动台试验研究 [J]. 振动与冲击, 2016, 35(4): 193 − 198, 216. LU Liang, JIANG Le, LI Hong, et al. Shaking table tests for aseismic performance of a controllable rocking reinforced concrete frame with column-end-hinge joints [J]. Journal of Vibration and Shock, 2016, 35(4): 193 − 198, 216. (in Chinese)
[8] 鲁亮, 叶雨立, 夏婉秋, 等. 体外预应力自复位钢筋混凝土框架抗震性能振动台试验研究 [J]. 土木工程学报, 2020, 53(增刊2): 68 − 73, 108. LU Liang, YE Yuli, XIA Wanqiu, et al. Study on the seismic performance of a 3D external prestressed self-centering reinforced concrete frame by shaking table test [J]. China Civil Engineering Journal, 2020, 53(Suppl 2): 68 − 73, 108. (in Chinese)
[9] 鲁亮, 陈凯芳, 胡宇飞. 梁端弹簧自复位框架耗能节点试验研究 [J]. 结构工程师, 2019, 35(1): 122 − 130. LU Liang, CHEN Kaifang, HU Yufei. Experimental research on the energy-dissipating self-centering frame joint with beam-end spring [J]. Structural Engineers, 2019, 35(1): 122 − 130. (in Chinese)
[10] 鲁亮, 汪磊, 胡宇飞. 梁端弹簧型自复位耗能框架节点刚度取值研究 [J]. 动力学与控制学报, 2020, 18(5): 22 − 28. LU Liang, WANG Lei, HU Yufei. Selection of joint stiffness for an energy-dissipating self-centering frame joint with beam-end spring [J]. Journal of Dynamics and Control, 2020, 18(5): 22 − 28. (in Chinese)
[11] BERTERO V V. Major issue and future directions in earthquake-resistant design [C]// Proceedings of the 10th World Conference on Earthquake Engineering. Madrid, Spain: International Association for Earthquake Engineering, 1992: 6407 − 6444.
[12] 蒋欢军, 郑建波, 张桦. 基于位移的抗震设计研究进展[J]. [J]. 工业建筑, 2008, 38(7): 1 − 5, 15. JIANG Huanjun, ZHENG Jianbo, ZHANG Ye. State of the art of displacement-based seismic design [J]. Industrial Construction, 2008, 38(7): 1 − 5, 15. (in Chinese)
[13] 门进杰, 霍文武, 兰涛, 等. 基于刚度和位移带可更换构件RCS混合框架结构抗震设计方法 [J]. 工程力学, 2021, 38(4): 169 − 178. doi: 10.6052/j.issn.1000-4750.2020.06.0370 MEN Jinjie, HUO Wenwu, LAN Tao, et al. Seismic design method of RCS hybrid frame structure with replaceable members based on stiffness and displacement [J]. Engineering Mechanics, 2021, 38(4): 169 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0370
[14] 王玉奎, 刘哲锋, 张丹, 等. RC梁构件基于能量的抗震设计方法研究 [J]. 工程力学, 2023, 40(11): 218 − 226. doi: 10.6052/j.issn.1000-4750.2022.04.0278 WANG Yukui, LIU Zhefeng, ZHANG Dan, et al. Research on energy based seismic design method of RC beam members [J]. Engineering Mechanics, 2023, 40(11): 218 − 226. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.04.0278
[15] 门进杰, 史庆轩, 周琦. 框架结构基于性能的抗震设防目标和性能指标的量化 [J]. 土木工程学报, 2008, 41(9): 76 − 82. MEN Jinjie, SHI Qingxuan, ZHOU Qi. Performance-based seismic fortification criterion and quantified performance index for reinforced concrete frame structures [J]. China Civil Engineering Journal, 2008, 41(9): 76 − 82. (in Chinese)
[16] FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings [S]. Washington: Federal Emergency Management Agency, 2000.
[17] GB 50011−2010, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2010. GB 50011−2010, Code for seismic design of building [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
[18] 吴晓涵. NosaCAD与ABAQUS和PERFORM-3D弹塑性模型转换及分析应用 [J]. 建筑结构, 2012, 42(增刊 2): 207 − 212. WU Xiaohan. Model transformation from NosaCAD to ABAQUS and PERFORM-3D and nonlinear structure analysis by these software [J]. Building Structure, 2012, 42(Suppl 2): 207 − 212. (in Chinese)