Processing math: 100%

基于碎片化分区的桥梁网络震后修复优先级分析与优化

杨国俊, 毛建博, 田里, 唐光武

杨国俊, 毛建博, 田里, 唐光武. 基于碎片化分区的桥梁网络震后修复优先级分析与优化[J]. 工程力学, 2024, 41(5): 211-223. DOI: 10.6052/j.issn.1000-4750.2022.10.0868
引用本文: 杨国俊, 毛建博, 田里, 唐光武. 基于碎片化分区的桥梁网络震后修复优先级分析与优化[J]. 工程力学, 2024, 41(5): 211-223. DOI: 10.6052/j.issn.1000-4750.2022.10.0868
YANG Guo-jun, MAO Jian-bo, TIAN Li, TANG Guang-wu. ANALYSIS AND OPTIMIZATION OF POST-EARTHQUAKE RESTORATION PRIORITY OF BRIDGE NETWORK UPON FRAGMENTATION[J]. Engineering Mechanics, 2024, 41(5): 211-223. DOI: 10.6052/j.issn.1000-4750.2022.10.0868
Citation: YANG Guo-jun, MAO Jian-bo, TIAN Li, TANG Guang-wu. ANALYSIS AND OPTIMIZATION OF POST-EARTHQUAKE RESTORATION PRIORITY OF BRIDGE NETWORK UPON FRAGMENTATION[J]. Engineering Mechanics, 2024, 41(5): 211-223. DOI: 10.6052/j.issn.1000-4750.2022.10.0868

基于碎片化分区的桥梁网络震后修复优先级分析与优化

基金项目: 国家自然科学基金项目(52168042,51808274);甘肃省自然科学基金项目(22JR5RA250);中国博士后科学基金项目(2019M653897XB);兰州理工大学红柳优秀青年人才支持计划项目
详细信息
    作者简介:

    毛建博(1999−),男,甘肃人,硕士生,主要从事桥梁震后修复研究(E-mail: 1580352381@qq.com)

    田 里(1998−),男,甘肃人,硕士生,主要从事桥梁地震易损性研究(E-mail: 1649687336@qq.com)

    唐光武(1963−),男,重庆人,研究员,工学硕士,主要从事桥梁抗震和桥梁检测方面的研究(E-mail: tangguangwu@cmhk.com)

    通讯作者:

    杨国俊(1988−),男,甘肃人,副教授,博士,主要从事桥梁抗震研究(E-mail: yanggj403@163.com)

  • 中图分类号: U447

ANALYSIS AND OPTIMIZATION OF POST-EARTHQUAKE RESTORATION PRIORITY OF BRIDGE NETWORK UPON FRAGMENTATION

  • 摘要:

    为了研究区域性桥梁的抗震优化问题,针对城市桥梁网络的震后修复优先级,引入基于交通密度的网络碎片化分区方法(FaDPa),提出了考虑恢复性和经济性的双重韧性指标,并针对震后短时抢救以及长时修复的时段特征引入了分阶段优化方法,尤其在长时修复阶段基于不同的修复需求对其进行了分时期处理;在抢险救灾阶段和长时修复阶段分别融入碎片化理论,前者以恢复韧性、时间为目标对抢救顺序进行优化,后者以综合韧性、碎片恢复性、时间对修复顺序进行优化。研究结果表明:基于密度的碎片化理论对桥梁网络不同修复阶段的地震损伤程度做出了不同的划分,此基础上展开的分阶段修复工作在抢险救灾过程中对其综合韧性提升程度达到52.3%,在长期修复过程中不影响韧性优化的前提下增加了碎片恢复性,其功能水平提升可达20.3%;修复优化阶段,经过考虑不同修复方向的双重韧性指标以及分时期处理的优化理论可以根据决策者的需求进行灵活调整,且面临不同修复环境时都具有一定的适应性。

    Abstract:

    In order to study the seismic restoration of regional bridges, aiming at the post-earthquake repair priority of urban bridge networks, a network fragmentation partitioning method (FaDPa) based on traffic density was introduced, and a dual toughness index considering recovery and economy was proposed, and a phased optimization method was introduced according to the time period characteristics of short-term rescue and long-term restoration after earthquake, especially in the long-term restoration stage based on different restoration needs. The fragmentation theory was applied to the rescue and relief stage and the long-term repair stage respectively. The former optimized the rescue order with recovery toughness and time as the target, while the latter optimized the repair order with comprehensive toughness, debris recovery and time. The result shows that the fragmentation theory proposed makes different divisions based on density for the seismic damage degree of different repair stages of the bridge network. The staged repair work on this basis has improved its comprehensive toughness by 52.3% in the process of emergency rescue and disaster relief. Under the premise of not affecting the toughness optimization in the long-term repair process, the fragmentation resilience is increased, and its functional level is increased by 20.3%. In the repair optimization stage, the dual toughness index considering different repair directions and the optimization theory of time-phase processing can be flexibly adjusted according to the needs of decision makers, so that it can adapt to different repair environments, and the repair results considering fragmentation theory supplement the reliability of repair from different dimensions.

  • 图  1   震后桥梁修复优先级优化流程图

    Figure  1.   Flow chart of priority optimization for post-earthquake bridge repair

    图  2   桥梁网络一次拓扑结构简图

    Figure  2.   Primary topology diagram of bridge network

    图  3   桥梁网络二次拓扑结构简图

    Figure  3.   Secondary topology diagram of bridge network

    图  4   碎片化形成框架

    Figure  4.   The frame of fragmentation

    图  5   碎片化形成过程图

    Figure  5.   Diagram of fragmentation formation process

    图  6   系统功能曲线

    Figure  6.   System function curve

    图  7   桥梁网络一次拓扑结构图

    Figure  7.   Diagram of primary topological structure of bridge network

    图  8   震前网络碎片化分区

    Figure  8.   Network fragmentation partition before earthquake

    图  9   震后抢险救灾前碎片化分区

    Figure  9.   After the earthquake rescue and relief before the fragmentation of the partition

    图  10   震后修复前碎片化分区

    Figure  10.   Fragmented partitions before post-earthquake restoration

    图  11   应急修复调度

    Figure  11.   Emergency repair scheduling

    图  12   系统功能优化

    Figure  12.   System function optimization

    图  13   震前碎片区域重要性

    Figure  13.   Composite score of debris partition before earthquake

    图  14   最终优化结果

    Figure  14.   Final results of optimization

    图  15   17个月的优化结果

    Figure  15.   17 months of optimization results

    图  16   各优化结果间关系

    Figure  16.   Relationships among optimization results

    图  17   碎片化在抢险救灾阶段的系统功能对比

    Figure  17.   System function comparison of fragmentation in the stage of rescue and relief

    图  18   抢险救灾最优修复次序的碎片相似性

    Figure  18.   Fragment similarity of the optimal repair order of emergency and disaster relief

    图  19   震后修复阶段优化结果韧性指标对比

    Figure  19.   Comparison of resilience index of optimization results in post-earthquake restoration stage

    图  20   震后修复阶段优化结果对比

    Figure  20.   Comparison of optimization results in post-earthquake restoration stage

    表  1   节点间距离

    Table  1   Distance between node

    节点节点局部密度
    ABCDEFGHIJKL
    A0.890.890.100.951
    B0.890.300.640.102
    C2
    D2
    E0.810.100.002
    F0.100.810.590.890.102
    G0.100.100.890.303
    H0.950.590.810.301
    I0.100.100.592
    J0.890.100.302
    K0.000.300.303
    注:加粗部分表示该节点间距离小于其距离阈值。
    下载: 导出CSV

    表  2   桥梁震后能力损伤

    Table  2   Capacity damage of bridge after earthquake

    损伤等级通行能力损失率ξ
    未破坏(N)0.00
    轻微破坏(L)0.00
    中度破坏(M)0.25
    严重破坏(E)0.50
    基本倒塌(C)1.00
    下载: 导出CSV

    表  3   桥梁网络基本参数

    Table  3   Basic parameters of bridge network

    路段节点道路参数地震参数桥梁桥梁参数
    路长/km均交通量(pcu/h)基本通行能力(pcu/h)类型新建费用(百万元)损伤程度抢险时间/h修复
    时间/月
    通行能力损失率ξ
    1(1,2)0.6012261550地震断裂带震中位置距路网较近,地震动为浅源地震,震源深度10 km1MSSS steel20.38E1040.50
    2(2,3)0.60134423402MSSS steel22.75L10.00
    3(1,8)0.6085710003MSSS steel23.45E1030.50
    4(1,5)0.709844904MSSS steel18.50M20.25
    5(2,4)1.00192323405MSSS steel19.42C1051.00
    6(3,4)0.85126417006MSSS con25.34M20.25
    7(7,8)0.8511233007MSC steel15.22N0.00
    8(6,7)0.806108308MSC steel15.39E1010.50
    9(4,5)0.854184709MSC steel20.54E1040.50
    10(8,9)0.8555678010MSC steel21.47M20.25
    11(7,10)0.8039850011MSC steel30.05C1051.00
    12(6,10)0.6053635012MSC con41.66E1030.50
    13(6,11)0.60941110013MSC con22.56M20.25
    14(5,11)0.601231234014MSC con30.40E1040.50
    15(5,12)0.7054740015MSSS con35.79E2030.50
    16(9,10)0.801238259016MSSS con20.58E1030.50
    17(11,12)0.851024155017MSSS con34.22L10.00
    注:MSSS steel为多跨简支钢梁桥;MSC steel为多跨连续钢梁桥;MSSS con为多跨简支混凝土梁桥;MSC con为多跨连续混凝土梁桥。
    下载: 导出CSV

    表  4   碎片化分区对比

    Table  4   Comparison of fragmented partitions

    震前抢险救灾前震后修复前
    [3, 7] [1] [3, 7, 10]
    [1, 2, 5, 6, 9] [3, 7] [2, 6]
    [8] [2, 4, 5, 6, 9, 13, 14, 15, 17] [8]
    [10] [8, 10, 11, 12, 16] [11]
    [11] [12]
    [12] [1, 4, 5, 9, 13, 14, 15, 17]
    [4, 13, 14, 15] [16]
    [16]
    注:加粗部分为每个碎片的密度峰值节点DPN。
    下载: 导出CSV
  • [1]

    BRUNEAU M, CHANG S E, EGUCHI R T, et al. A Framework to quantitatively assess and enhance the seismic resilience of communities [J]. Earthquake Spectra, 2003, 19(4): 733 − 752. doi: 10.1193/1.1623497

    [2]

    ZOBEL C W, KHANSA L. Characterizing multi-event disaster resilience [J]. Computers & Operations Research, 2014, 42: 83 − 94.

    [3]

    HENRY D, RAMIREZ-MARQUEZ J E. Generic metrics and quantitative approaches for system resilience as a function of time [J]. Reliability Engineering & System Safety, 2012, 99: 114 − 122.

    [4]

    CHEN L C, MILLER-HOOKS E. Resilience: An indicator of recovery capability in intermodal freight transport [J]. Transportation Science, 2012, 46(1): 109 − 123. doi: 10.1287/trsc.1110.0376

    [5]

    BOCCHINI P, FRANGOPOL D M. Optimal resilience- and cost-based postdisaster intervention prioritization for bridges along a highway segment [J]. Journal of Bridge Engineering, 2012, 17(1): 117 − 129. doi: 10.1061/(ASCE)BE.1943-5592.0000201

    [6]

    KARAMLOU A, BOCCHINI P. Sequencing algorithm with multiple-input genetic operators: Application to disaster resilience [J]. Engineering Structures, 2016, 117: 591 − 602. doi: 10.1016/j.engstruct.2016.03.038

    [7]

    EDRISSI A, NOURINEJAD M, ROORDA M J. Transportation network reliability in emergency response [J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 80: 56 − 73. doi: 10.1016/j.tre.2015.05.005

    [8] 刘振亮. 考虑震后救援能力的城市桥梁网络抗震性能评估研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    LIU Zhenliang. Seismic performance assessment of Urban bridge network considering the post-disaster evacuation capacity [D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)

    [9]

    ZHANG W L, WANG N Y, NICHOLSON C. Resilience-based post-disaster recovery strategies for road-bridge networks [J]. Structure and Infrastructure Engineering, 2017, 13(11): 1404 − 1413. doi: 10.1080/15732479.2016.1271813

    [10]

    ANWAR T, LIU C F, VU H L, et al. Partitioning road networks using density peak graphs: Efficiency vs. accuracy [J]. Information Systems, 2017, 64: 22 − 40. doi: 10.1016/j.is.2016.09.006

    [11] 侯本伟, 李小军, 韩强, 等. 基于多指标分析的路网单元抗震改造重要度评价[J]. 中国科学: 技术科学, 2018, 48(2): 217 − 228. doi: 10.1360/N092017-00040

    HOU Benwei, LI Xiaojun, HAN Qiang, et al. Seismic retrofit priority assessment of highway networks based on multi-indices analysis [J]. Scientia Sinica Technologica, 2018, 48(2): 217 − 228. (in Chinese) doi: 10.1360/N092017-00040

    [12]

    ZOU Q L, CHEN S R. Enhancing resilience of interdependent traffic-electric power system [J]. Reliability Engineering & System Safety, 2019, 191: 106557.

    [13]

    KAVIANI A, THOMPSON R G, RAJABIFARD A, et al. A model for multi-class road network recovery scheduling of regional road networks [J]. Transportation, 2020, 47(1): 109 − 143. doi: 10.1007/s11116-017-9852-5

    [14] 吕彪, 高自强, 管心怡, 等. 基于日变交通配流的城市道路网络韧性评估[J]. 西南交通大学学报, 2020, 55(6): 1181 − 1190. doi: 10.3969/j.issn.0258-2724.20191214

    LYU Biao, GAO Ziqiang, GUAN Xinyi, et al. Resilience assessment of urban road network based on day-to-day traffic assignment [J]. Journal of Southwest Jiaotong University, 2020, 55(6): 1181 − 1190. (in Chinese) doi: 10.3969/j.issn.0258-2724.20191214

    [15]

    LIU K Z, ZHAI C H, DONG Y. Optimal restoration schedules of transportation network considering resilience [J]. Structure and Infrastructure Engineering, 2021, 17(8): 1141 − 1154. doi: 10.1080/15732479.2020.1801764

    [16] 寇峥, 李宁. 基于NSGA-Ⅱ的城市桥梁系统震后可恢复性分析与优化[J]. 工程力学, 2021, 38(3): 148 − 158, 180. doi: 10.6052/j.issn.1000-4750.2020.05.0290

    KOU Zheng, LI Ning. Study on earthquake resilience analysis and optimization for urban bridge network system Based on NSGA-II algorithm [J]. Engineering Mechanics, 2021, 38(3): 148 − 158, 180. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0290

    [17] 宗成才, 冀昆, 温瑞智, 等. 城市燃气管网三维度抗震韧性定量评估方法[J]. 工程力学, 2021, 38(2): 146 − 156. doi: 10.6052/j.issn.1000-4750.2020.04.0219

    ZONG Chengcai, JI Kun, WEN Ruizhi, et al. Three-dimensional seismic resilience quantification framework for the urban gas network [J]. Engineering Mechanics, 2021, 38(2): 146 − 156. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0219

    [18] 张望欣, 韩强, 温佳年, 等. 基于地震灾害管理的桥梁网络韧性决策框架[J]. 土木工程学报, 2023, 56(4): 72 − 82. doi: 10.15951/j.tmgcxb.21121231

    ZHANG Wangxin, HAN Qiang, WEN Jianian, et al. A decision framework for bridge networks resilience based on earthquake disaster management [J]. China Civil Engineering Journal, 2023, 56(4): 72 − 82. (in Chinese) doi: 10.15951/j.tmgcxb.21121231

    [19]

    ZHANG M Y, YANG X J, ZHANG J, et al. Post-earthquake resilience optimization of a rural “road-bridge” transportation network system [J]. Reliability Engineering & System Safety, 2022, 225: 108570.

    [20]

    LIU Z L, LI S C, GUO A X, et al. Comprehensive functional resilience assessment methodology for bridge networks using data-driven fragility models [J]. Soil Dynamics and Earthquake Engineering, 2022, 159: 107326. doi: 10.1016/j.soildyn.2022.107326

    [21]

    SHARMA N, TABANDEH A, GARDONI P. Regional resilience analysis: A multiscale approach to optimize the resilience of interdependent infrastructure [J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(12): 1315 − 1330. doi: 10.1111/mice.12606

    [22] 缪惠全, 钟紫蓝, 侯本伟, 等. 基于系统动力学的城市供水管网动态抗震韧性评估方法[J]. 工程力学, 2023, 40(12): 99 − 112. doi: 10.6052/j.issn.1000-4750.2022.02.0154

    MIAO Huiquan, ZHONG Zilan, HOU Benwei, et al. Dynamic seismic resilience assessment method for water distribution networks based on system dynamics [J]. Engineering Mechanics, 2023, 40(12): 99 − 112. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.02.0154

    [23]

    WANG D, ZHAO X Y, LIU Y. Effect of spatial variation of earthquake ground motions on seismic vulnerability of urban road network considering building environment [J]. Buildings, 2022, 12(3): 12030308. doi: 10.3390/buildings12030308

    [24] 牟健慧, 段培永, 高亮, 等. 基于混合遗传算法求解分布式流水车间逆调度问题[J]. 机械工程学报, 2022, 58(6): 295 − 308.

    MU Jianhui, DUAN Peiyong, GAO Liang, et al. Hybrid genetic algorithm for distributed flow shop inverse scheduling problem [J]. Journal of Mechanical Engineering, 2022, 58(6): 295 − 308. (in Chinese)

    [25]

    MYEONG S, JUNG Y, LEE E. A study on determinant factors in smart city development: An analytic hierarchy process analysis [J]. Sustainability, 2018, 10(8): 10082606. doi: 10.3390/su10082606

    [26]

    CHANG S E, SHINOZUKA M, MOORE J E. Probabilistic earthquake scenarios: Extending risk analysis methodologies to spatially distributed systems [J]. Earthquake Spectra, 2000, 16(3): 557 − 572. doi: 10.1193/1.1586127

    [27]

    CHANG S E, NOJIMA N. Measuring post-disaster transportation system performance: The 1995 Kobe earthquake in comparative perspective [J]. Transportation Research Part A:Policy and practice, 2001, 35(6): 475 − 494. doi: 10.1016/S0965-8564(00)00003-3

    [28]

    NIELSON B G, DESROCHES R. Analytical seismic fragility curves for typical bridges in the central and southeastern United States [J]. Earthquake Spectra, 2007, 23(3): 615 − 633. doi: 10.1193/1.2756815

图(20)  /  表(4)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  38
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2022-12-21
  • 网络出版日期:  2023-03-03
  • 刊出日期:  2024-05-24

目录

    /

    返回文章
    返回