MECHANICAL PERFORMANCE ANALYSIS ON THE WIRE NETS UNDER STATIC PRESSURE BY RIGID WARHEAD
-
摘要: 金属网是由高强钢丝编织而成的三维网状结构,在近程武器(如火箭弹、迫击炮弹)拦截中应用广泛。为研究分析金属网与弹头间相互作用的力学性能,结合金属网的实弹拦截试验情况和破坏特点,设计了刚性弹头加载装置和金属网静压试验平台,开展了刚性弹头加载装置静压金属网的力学性能试验研究。结果表明:在受到加载装置向下静压的过程中,金属网整体上呈现漏斗型变形,金属网中与弹头接触部分的菱形网孔呈现逐步接近于弹头剖面形状的变形;金属网的破坏位于与弹头接触部分的菱形网孔中钢丝交叉节点处。依据试验现象及相关结果的研究,推导了刚性弹头静压金属网临界荷载的理论计算方法,分析了误差产生的原因,理论方法与试验获得的静压临界荷载吻合较好,误差在±10%以内。研究成果可为金属网拦截弹体的初步设计提供参考。Abstract: Wire nets refers to the three-dimensional mesh-structure woven by high-strength steel wire, which has been used in the interception of short-range weapons (such as rocket and mortar shells). To understand the mechanical properties of the interaction between the wire nets and the warhead, combined with the intercepted tests and the fracture feature of the wire nets, the rigid warhead device and the static pressure experimental platform of the wire nets were designed, and the static tests had been carried out for the wire nets pressured by the rigid warhead. The results show that: when the wire nets were downing, the wire nets presented the funnel-shaped deformation on a whole and the diamond-shaped mesh at the contact part between the wire nets and the warhead presented the deformation gradually approaching to the profile shape of the warhead; and the fracture was located at the intersection of the steel wires in the diamond-shaped mesh which was belonged to the contact part. Based on the research of experimental phenomena and relevant results, one theoretical calculation method for static pressure critical force by the rigid warhead was deduced and the reasons of the errors were analyzed. Overall, the theoretical calculation method for the static pressure critical force was in a good agreement with that obtained from the tests and the error was within 10%. The research results can provide a reference for the preliminary design of the wire nets used for intercepting the short-range weapons.
-
Key words:
- wire nets /
- high-strength steel wire /
- rigid warhead /
- static pressure /
- mechanical analysis
-
表 1 金属网规格尺寸参数
Table 1. Size parameters of the wire nets
编网
钢丝
直径d/mm沿水平方向
菱形网孔
短边尺寸x/mm沿竖直方向
菱形网孔
长边尺寸y/mm菱形
网孔
锐角β/(o)网孔内切
圆直径Di/mm沿平面
外线方向
外边界
厚度ht/mm内净
厚度
hi/
mm2 60 90 58.9 45 12.5 6.5 3 60 90 58.9 45 10.5 6.5 表 2 静压试验加载方案
Table 2. Test loading scheme for static pressure
弹头直径/mm 金属网直径/mm 试验命名(X=1, 2) 82 2 82-2-X 3 82-3-X 107 2 107-2-X 3 107-3-X 表 3 刚性弹头静压试验与理论计算比较结果
Table 3. Comparison between static pressure tests and theoretical calculation by the rigid warhead
类别 试验值/kN 平均值/kN 理论计算值/kN 误差/(%) 82-3-1 10.16 9.90 9.85 0.5 82-3-2 9.64 82-2-1 5.06 4.82 4.90 1.7 82-2-2 4.57 107-3-1 14.84 15.27 13.90 9.0 107-3-2 15.70 107-2-1 6.83 6.73 6.88 2.2 107-2-2 6.63 -
[1] ESCALLÓN J P, BOETTICHER V, WENDELER C, et al. Mechanics of chain-link wire nets with loose connections [J]. Engineering Structures, 2015, 101: 68 − 87. doi: 10.1016/j.engstruct.2015.07.005 [2] 汪敏, 石少卿, 阳友奎. 柔性棚洞在落石冲击作用下的数值分析[J]. 工程力学, 2014, 31(5): 151 − 157. doi: 10.6052/j.issn.1000-4750.2012.12.0923WANG Min, SHI Shaoqing, YANG Youkui. Numerical simulation of a flexible rock shed under the impact of a rockfall [J]. Engineering Mechanics, 2014, 31(5): 151 − 157. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.12.0923 [3] 金云涛, 余志祥, 骆丽茹, 等. 正交钢丝环链网片顶压力学行为薄膜等效方法[J]. 工程力学, 2021, 38(11): 114 − 121. doi: 10.6052/j.issn.1000-4750.2020.10.0777JIN Yuntao, YU Zhixiang, LUO Liru, et al. A membrane equivalent method for mechanical behavior of orthogonal steel wire ring net [J]. Engineering Mechanics, 2021, 38(11): 114 − 121. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0777 [4] 孙克国, 张宇, 许炜萍, 等. 考虑承载-破坏全过程的钢筋网力学行为分析与预测[J]. 工程力学, 2023, 40(3): 175 − 188. doi: 10.6052/j.issn.1000-4750.2021.09.0724SUN Keguo, ZHANG Yu, XU Weiping, et al. Analysis and prediction of mechanical behavior of steel mesh considering the whole loading-failure process [J]. Engineering Mechanics, 2023, 40(3): 175 − 188. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.09.0724 [5] 邓明科, 李彤, 范丽玮. 钢筋网高延性混凝土加固砖柱偏心受压性能试验及计算方法研究[J]. 工程力学, 2021, 38(5): 61 − 71. doi: 10.6052/j.issn.1000-4750.2019.09.0550DENG Mingke, LI Tong, FAN Liwei. Experiment and calculation method for eccentrically loaded masonry columns strengthened with bar mesh HDC [J]. Engineering Mechanics, 2021, 38(5): 61 − 71. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0550 [6] 卜良桃, 徐博煜. 超高性能RPC钢筋网加固混凝土界面粘结性能试验研究[J]. 工程力学, 2022, 39(11): 123 − 132. doi: 10.6052/j.issn.1000-4750.2021.06.0469BU Liangtao, XU Boyu. Experimental study on interfacial bonding performance of reactive powder concrete strengthened with bar mesh [J]. Engineering Mechanics, 2022, 39(11): 123 − 132. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.0469 [7] LI J, WU C Q, HAO H, et al. Experimental and numerical study on steel wire mesh reinforced concrete slab under contact explosion [J]. Materials & Design, 2017, 116: 77 − 91. [8] PAVLOVIC A, FRAGASSA C. Investigating the resistance of reinforced barriers to high velocity projectiles [J]. Engineering Structures, 2018, 174: 384 − 395. doi: 10.1016/j.engstruct.2018.07.074 [9] WANG C Z, WANG H X, SHANKAR K, et al. Dynamic failure behavior of steel wire mesh subjected to medium velocity impact: Experiments and simulations [J]. International Journal of Mechanical Sciences, 2022, 216: 106991. doi: 10.1016/j.ijmecsci.2021.106991 [10] WANG C Z, WANG H X, SHANKAR K, et al. On the mechanical behaviour of steel wire mesh subjected to low-velocity impact [J]. Thin-Walled Structures, 2021, 159: 107281. doi: 10.1016/j.tws.2020.107281 [11] BALOS S, GRABULOV V, SIDJANIN L, et al. Wire fence as applique armour [J]. Materials & Design, 2010, 31(3): 1293 − 1301. [12] 尚宇晴, 杜忠华, 陈曦, 等. 一种新型“飞板”主动防护拦截效能分析[J]. 火力与指挥控制, 2018, 43(4): 165 − 168, 173. doi: 10.3969/j.issn.1002-0640.2018.04.036SHANG Yuqing, DU Zhonghua, CHEN Xi, et al. Interception probability analysis of a new type of flying board active protection system [J]. Fire Control & Command Control, 2018, 43(4): 165 − 168, 173. (in Chinese) doi: 10.3969/j.issn.1002-0640.2018.04.036 [13] 伍惊涛, 朱磊, 孙章毅. 一种拦截网战斗部设计与飞散特性仿真分析[J]. 舰船电子工程, 2022, 42(5): 87 − 90. doi: 10.3969/j.issn.1672-9730.2022.05.019WU Jingtao, ZHU Lei, SUN Zhangyi. Design of interception network warhead and simulation analysis of dispersion characteristics [J]. Ship Electronic Engineering, 2022, 42(5): 87 − 90. (in Chinese) doi: 10.3969/j.issn.1672-9730.2022.05.019 [14] VON BOETTICHER A, VOLKWEIN A. Numerical modelling of chain-link steel wire nets with discrete elements [J]. Canadian Geotechnical Journal, 2019, 56(3): 398 − 419. doi: 10.1139/cgj-2017-0540 [15] JIN Y T, YU Z X, LUO L R, et al. A membrane equivalent method to reproduce the macroscopic mechanical responses of steel wire-ring nets under rockfall impact [J]. Thin-Walled Structures, 2021, 167: 108227. doi: 10.1016/j.tws.2021.108227 [16] BAEK B, KARAMPINOS E, HADJIGEORGIOU J. Understanding the impact of test configuration on welded-wire mesh laboratory test results [J]. Rock Mechanics and Rock Engineering, 2022, 53(11): 4873 − 4892. [17] 俞棠荣. 金属网对弹体主动诱爆拦截的作用机理研究[D]. 重庆: 陆军勤务学院, 2019.YU Tangrong. Research on the active intercepting and detonating mechanism of TECCO nets for projectile body [D]. Chongqing: Army Logistics Academy, 2019. (in Chinese) [18] 郭立平, 余志祥, 骆丽茹, 等. 基于力流等效的环形网顶破力学行为解析方法[J]. 工程力学, 2020, 37(5): 129 − 139. doi: 10.6052/j.issn.1000-4750.2019.07.0345GUO Liping, YU Zhixiang, LUO Liru, et al. An analytical method of puncture mechanical behavior of ring nets based on the load path equivalence [J]. Engineering Mechanics, 2020, 37(5): 129 − 139. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0345 [19] 杨翔, 王雨时, 闻泉. 迫击炮弹空气动力特性攻角系数数值研究[J]. 弹箭与制导学报, 2014, 34(2): 139 − 141, 156. doi: 10.3969/j.issn.1673-9728.2014.02.038YANG Xiang, WANG Yushi, WEN Quan. numerical simulation on aerodynamic characteristics about angle of attack coefficient of mortar projectiles [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(2): 139 − 141, 156. (in Chinese) doi: 10.3969/j.issn.1673-9728.2014.02.038 -