SPATIAL AND TEMPORAL STATISTICAL CHARACTERISTICS OF THE WIND FIELD OF THUNDERSTORM OUTFLOWS BASED ON MEASURED DATA IN BEIJING URBAN AREA
-
摘要: 雷暴风引发的结构破坏、财产损失和人员伤害屡有发生,其风场特性的认识和研究是结构抗雷暴风设计的基础。该文基于北京市区325 m高气象塔实测数据识别的70个雷暴风事件,采用经典雷暴风模型对其平均风及脉动风时空特性等进行了统计分析,研究结果表明:雷暴风频发于夏季,其峰值风速主要出现在北京时间的下午及傍晚时分且较易发生于西北方向;在峰值风速发生时段,平均风速剖面均值呈现轻微的鼻形特征;雷暴风湍流强度和阵风因子剖面与大尺度稳态强风特性存在较大差异,且雷暴风统计结果均大于大尺度稳态强风的对应值;北京市结构抗雷暴风设计中可考虑应用Von Karman谱计算雷暴风荷载。该研究结果可为雷暴风风场统一模型的建立和结构抗雷暴风设计提供参考。Abstract: The structural damage, property loss and personal injury caused by thunderstorm outflows often occur, and the understanding and study of their wind field characteristics are the basis of the design of structure resistance to thunderstorm outflows. The 70 thunderstorm outflow events identified based on the measured data of 325m high meteorological towers in Beijing urban area are statistically analyzed by applying the classical signal decomposition model of thunderstorm outflows. The research results show that thunderstorms occur frequently in summer, whose peak gust speeds mainly occur in the afternoon and evening of Beijing time and are more prone to occur in the northwest. When the peak wind speed occurs, the moving average wind speed profile presents a slight nose shape. The turbulence intensity and gust factor profiles are quite different from that of synoptic winds, and the statistical results of thunderstorm outflows are larger than the corresponding values of synoptic winds. The power spectral density of thunderstorm outflows is in good agreement with Von Karman model. The results of this study can provide a basis for the establishment of a unified model of the wind field of thunderstorm outflows and the design of structure resistance to thunderstorm outflows.
-
表 1 不同高度雷暴风风速特性
Table 1. Wind speed characteristics of the thunderstorm outflow event at different heights
高度h/m 阵风风速峰值$ \hat{V} $ 10 min移动平均风速均值$\overline{{V}}_{10}$ 1 h移动平均风速均值$\overline{{V}}_{60}$ 10 min移动湍流强度均值$ \bar{I} $ 阵风因子$G_{V}$ 10 min阵风因子$ G_{10} $ 10 min偏度$ \gamma_{10} $ 10 min峰值$K_{10}$ 1 h偏度$\gamma_{60}$ 1 h峰值$\kappa_{60}$ 8 16.52 5.49 2.58 0.40 1.66 3.01 0.86 4.23 2.15 7.97 16 17.66 7.41 3.42 0.32 1.49 2.38 0.61 3.82 1.81 6.20 32 21.59 10.75 4.71 0.21 1.33 2.01 0.36 3.05 1.79 5.64 47 23.28 13.07 5.25 0.17 1.24 1.78 0.36 2.83 1.40 3.99 64 23.09 14.05 5.48 0.16 1.17 1.64 0.24 2.18 1.38 3.99 80 23.75 14.79 5.78 0.15 1.12 1.61 0.07 2.05 1.31 3.71 140 28.35 18.88 7.30 0.11 1.21 1.50 0.00 2.48 0.98 2.71 200 29.14 21.31 8.45 0.06 1.11 1.37 −0.13 2.34 0.83 2.33 280 29.80 22.34 8.37 0.05 1.07 1.33 −0.07 2.15 0.85 2.37 表 2 不同高度雷暴风持时特征
Table 2. Characteristics of duration of thunderstorm outflows at different heights
高度h/m M(Ti) C(Ti) N(Ti) M(Td) C(Td) N(Td) M(Tt) C(Tt) N(Tt) 8 44.63 0.64 14.90 49.68 0.72 14.60 94.31 0.53 34.80 16 47.99 0.65 5.80 57.11 0.76 5.90 105.10 0.52 12.60 32 76.70 0.84 13.30 104.65 1.67 21.30 181.35 1.06 35.20 47 78.73 0.76 18.50 82.62 0.86 14.80 161.35 0.64 43.40 64 84.74 0.90 11.90 114.84 0.69 18.10 199.59 0.63 35.10 80 94.39 0.85 15.70 109.98 0.78 11.90 204.37 0.63 31.20 140 144.14 0.89 18.20 223.68 0.84 16.00 367.81 0.71 34.20 200 191.53 0.81 20.80 342.10 0.94 20.40 533.63 0.77 42.70 280 177.56 0.86 18.50 415.89 0.94 19.80 593.44 0.78 39.40 表 3 雷暴风记录折算脉动风速均值、标准差、偏度及峰度的平均值和标准差
Table 3. The mean and standard deviation of mean, standard deviation, skewness and kurtosis of reduced turbulent fluatuation for the thunderstorm outflow records detected
统计特性 均值$m$ 标准差$\sigma $ 偏度$\gamma $ 峰度$\kappa $ 平均值 −0.01 1.00 0.05 2.87 标准差 0.02 0.01 0.21 0.38 表 4 不同高度阵风因子值
Table 4. Gust factors at different heights
高度h/m 雷暴风发展时间段 t−5 t−4 t−3 t−2 t−1 t t1 t2 t3 t4 t5 8 1.44 1.42 1.44 1.45 1.48 1.53 1.53 1.50 1.47 1.42 1.38 16 1.39 1.35 1.37 1.35 1.37 1.48 1.48 1.41 1.38 1.34 1.33 32 1.29 1.30 1.29 1.27 1.30 1.35 1.35 1.33 1.32 1.27 1.26 47 1.29 1.33 1.29 1.29 1.30 1.36 1.35 1.33 1.30 1.28 1.30 64 1.26 1.29 1.26 1.26 1.25 1.31 1.31 1.31 1.27 1.27 1.28 80 1.26 1.28 1.25 1.24 1.26 1.27 1.28 1.31 1.28 1.26 1.25 140 1.19 1.23 1.19 1.22 1.20 1.26 1.23 1.25 1.20 1.23 1.18 200 1.18 1.19 1.17 1.19 1.17 1.17 1.21 1.20 1.18 1.21 1.18 280 1.23 1.26 1.27 1.22 1.19 1.17 1.20 1.21 1.18 1.19 1.16 -
[1] ZHANG S, SOLARI G, DE GAETANO P, et al. A refined analysis of thunderstorm outflow characteristics relevant to the wind loading of structures [J]. Probabilistic Engineering Mechanics, 2018, 54: 9 − 24. doi: 10.1016/j.probengmech.2017.06.003 [2] 褚云朋, 孙鑫晖, 李明, 等. 下击暴流作用下菱形马鞍面屋盖风压特性[J]. 工程力学, 2022, 39(3): 182 − 192. doi: 10.6052/j.issn.1000-4750.2021.01.0091CHU Yunpeng, SUN Xinhui, LI Ming, et al. Wind pressures on a large-span hyperbolic-paraboloid roof subjected to a simulated downburst [J]. Engineering Mechanics, 2022, 39(3): 182 − 192. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0091 [3] 宋淳宸, 苏延文, 黄国庆, 等. 基于多元EMD-AM/FM分解的多点非平稳雷暴风速模拟[J]. 工程力学, 2019, 36(7): 109 − 115, 125. doi: 10.6052/j.issn.1000-4750.2018.03.0148SONG Chunchen, SU Yanwen, HUANG Guoqing, et al. Simulation of multivariate non-stationary thunderstorm based on MEMD-AM/FM decomposition [J]. Engineering Mechanics, 2019, 36(7): 109 − 115, 125. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0148 [4] 谢强, 张勇, 李杰. 华东电网500 kV任上5237线飑线风致倒塔事故调查分析[J]. 电网技术, 2006, 30(10): 59 − 63, 89. doi: 10.3321/j.issn:1000-3673.2006.10.012XIE Qiang, ZHANG Yong, LI Jie. Investigation on tower collapses of 500 kV Renshang 5237 Transmission line caused by downburst [J]. Power System Technology, 2006, 30(10): 59 − 63, 89. (in Chinese) doi: 10.3321/j.issn:1000-3673.2006.10.012 [5] 程月星, 孙继松, 戴高菊, 等. 2016年北京地区一次雷暴大风的观测研究[J]. 气象, 2018, 44(12): 1529 − 1541. doi: 10.7519/j.issn.10000526.2018.12.003CHENG Yuexing, SUN Jisong, DAI Gaoju, et al. Study on a thunderstorm event over Beijing in 2016 [J]. Meteorological Monthly, 2018, 44(12): 1529 − 1541. (in Chinese) doi: 10.7519/j.issn.10000526.2018.12.003 [6] ZHANG S, SOLARI G, YANG Q S, et al. Extreme wind speed distribution in a mixed wind climate [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 239 − 253. doi: 10.1016/j.jweia.2018.03.019 [7] BRUSCO S, SOLARI G. Transient aeroelasticity of structures subjected to thunderstorm outflows [J]. Engineering Structures, 2021, 245: 112801. doi: 10.1016/j.engstruct.2021.112801 [8] 李波, 陈文龙, 杨庆山, 等. 下击暴流作用下高速列车运行安全性能评估[J]. 工程力学, 2021, 38(10): 248 − 256. doi: 10.6052/j.issn.1000-4750.2020.09.0640LI Bo, CHEN Wenlong, YANG Qingshan, et al. Evaluating the safety of high-speed trains at the action of downburst [J]. Engineering Mechanics, 2021, 38(10): 248 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0640 [9] 李艺, 黄国庆, 程旭, 等. 移动型下击暴流及其作用下高层建筑风荷载的数值模拟[J]. 工程力学, 2020, 37(3): 176 − 187. doi: 10.6052/j.issn.1000-4750.2019.04.0231LI Yi, HUANG Guoqing, CHENG Xu, et al. The numerical simulation of moving downbursts and their induced wind load on high-rise buildings [J]. Engineering Mechanics, 2020, 37(3): 176 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0231 [10] 吴庆梅, 郭虎, 杨波, 等. 地形和城市热力环流对北京地区一次β中尺度暴雨的影响[J]. 气象, 2009, 35(12): 58 − 64. doi: 10.7519/j.issn.1000-0526.2009.12.008WU Qingmei, GUO Hu, YANG Bo, et al. Effects of topography and urban heat circulation on a Meso-β torrential rain in Beijing area [J]. Meteorological Monthly, 2009, 35(12): 58 − 64. (in Chinese) doi: 10.7519/j.issn.1000-0526.2009.12.008 [11] SOLARI G, BURLANDO M, DE GAETANO P, et al. Characteristics of thunderstorms relevant to the wind loading of structures [J]. Wind and Structures, 2015, 20(6): 763 − 791. doi: 10.12989/was.2015.20.6.763 [12] ZHANG S, LI B, SOLARI G, et al. A Refined study of atmospheric wind properties in the Beijing Urban Area based on a 325 m meteorological tower [J]. Atmosphere, 2021, 12(6): 786. doi: 10.3390/atmos12060786 [13] ZHANG S, YANG Q S, SOLARI G, et al. Characteristics of thunderstorm outflows in Beijing urban area [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 195: 104011. doi: 10.1016/j.jweia.2019.104011 [14] CHEN L Z, LETCHFORD C W. A deterministic–stochastic hybrid model of downbursts and its impact on a cantilevered structure [J]. Engineering Structures, 2004, 26(5): 619 − 629. doi: 10.1016/j.engstruct.2003.12.009 [15] 毕文哲, 田利. 下击暴流作用下输电塔-线体系倒塌破坏研究[J]. 工程力学, 2022, 39(增刊): 78 − 83. doi: 10.6052/j.issn.1000-4750.2021.05.S012BI Wenzhe, TIAN Li. Study on the collapse failure of transmission tower-line system under downburst [J]. Engineering Mechanics, 2022, 39(Suppl): 78 − 83. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.S012 [16] 徐晓达. 超高层建筑周边行人高度处平均风速分布特性及风环境评估[D]. 北京: 北京交通大学, 2019.XU Xiaoda. Characteristics of mean wind speed distributions and wind environment assessment at pedestrian-level height around super-tall buildings [D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese) [17] GB 50009−2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.GB 50009−2012, Load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese) [18] 张鑫鑫, 李波, 张石, 等. 基于北京中心城区实测的城市边界层风场特性[J]. 建筑结构学报, 2022, 43(3): 109 − 117. doi: 10.14006/j.jzjgxb.2020.0432ZHANG Xinxin, LI Bo, ZHANG Shi, et al. Characteristics of wind field in urban boundary layer based on measured data in central Beijing [J]. Journal of Building Structures, 2022, 43(3): 109 − 117. (in Chinese) doi: 10.14006/j.jzjgxb.2020.0432 [19] DE GAETANO P, PIA REPETTO M, REPETTO T, et al. Separation and classification of extreme wind events from anemometric records [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 126: 132 − 143. doi: 10.1016/j.jweia.2014.01.006 [20] 秦丽, 李耀东, 高守亭. 北京地区雷暴大风的天气-气候学特征研究[J]. 气候与环境研究, 2006, 11(6): 754 − 762. doi: 10.3969/j.issn.1006-9585.2006.06.010QIN Li, LI Yaodong, GAO Shouting. The synoptic and climatic characteristic studies of thunderstorm winds in Beijing [J]. Climatic and Environmental Research, 2006, 11(6): 754 − 762. (in Chinese) doi: 10.3969/j.issn.1006-9585.2006.06.010 [21] BURLANDO M, ZHANG S, SOLARI G. Monitoring, cataloguing, and weather scenarios of thunderstorm outflows in the northern Mediterranean [J]. Natural Hazards and Earth System Sciences, 2018, 18(9): 2309 − 2330. doi: 10.5194/nhess-18-2309-2018 [22] LI X, LI S P, SU Y, et al. Study on the time-varying extreme value characteristic of the transient loads on a 5: 1 rectangular cylinder subjected to a thunderstorm-like wind [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 229: 105161. doi: 10.1016/j.jweia.2022.105161 [23] KWON D K, KAREEM A. Gust-front factor: New framework for wind load effects on structures [J]. Journal of Structural Engineering, 2009, 135(6): 717 − 732. doi: 10.1061/(ASCE)0733-9445(2009)135:6(717) [24] FLAY R G J, STEVENSON D C. Integral length scales in strong winds below 20 m [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28(1/2/3): 21 − 30. [25] 黄本才. 结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2001: 57.
HUANG Bencai. Principle and application of structural wind resistance analysis [M]. Shanghai: Tongji University Press, 2001:57.[26] Architecture Institute of Japan. AIJ Recommendations for loads on buildings: AIJ 2015 [M]. Tokyo: Architectural Institute of Japan, 2015. [27] European Committee for Standardization. Eurocode 1: Actions on structures — General actions — Part 1-4: Wind actions: 2004 [S]. Brussels: European Committee of Standardization, 2004. [28] 陈超豪, 王子茹, 霍林生, 等. 实测下击暴流风场特性分析[J]. 土木与环境工程学报(中英文), 2022, 44(1): 126 − 133.CHEN Chaohao, WANG Ziru, HUO Linsheng, et al. Analysis of wind field characteristics of measured downburst [J]. Journal of Civil and Environmental Engineering, 2022, 44(1): 126 − 133. (in Chinese) -