留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于北京市区实测数据的雷暴风风场时空统计特性研究

张石 杨庆山 徐晓达

张石, 杨庆山, 徐晓达. 基于北京市区实测数据的雷暴风风场时空统计特性研究[J]. 工程力学, 2023, 40(6): 193-203. doi: 10.6052/j.issn.1000-4750.2022.08.0676
引用本文: 张石, 杨庆山, 徐晓达. 基于北京市区实测数据的雷暴风风场时空统计特性研究[J]. 工程力学, 2023, 40(6): 193-203. doi: 10.6052/j.issn.1000-4750.2022.08.0676
ZHANG Shi, YANG Qing-shan, XU Xiao-da. SPATIAL AND TEMPORAL STATISTICAL CHARACTERISTICS OF THE WIND FIELD OF THUNDERSTORM OUTFLOWS BASED ON MEASURED DATA IN BEIJING URBAN AREA[J]. Engineering Mechanics, 2023, 40(6): 193-203. doi: 10.6052/j.issn.1000-4750.2022.08.0676
Citation: ZHANG Shi, YANG Qing-shan, XU Xiao-da. SPATIAL AND TEMPORAL STATISTICAL CHARACTERISTICS OF THE WIND FIELD OF THUNDERSTORM OUTFLOWS BASED ON MEASURED DATA IN BEIJING URBAN AREA[J]. Engineering Mechanics, 2023, 40(6): 193-203. doi: 10.6052/j.issn.1000-4750.2022.08.0676

基于北京市区实测数据的雷暴风风场时空统计特性研究

doi: 10.6052/j.issn.1000-4750.2022.08.0676
基金项目: 国家自然科学基金项目(52108431);北京市自然科学基金项目(8222013);北京市博士后工作经费项目(2021-ZZ-115);建大英才项目(JDYC20220806)
详细信息
    作者简介:

    张 石(1993−),女,吉林人,讲师,博士,主要从事结构风工程及防灾减灾研究(E-mail: zhangshi@bucea.edu.cn)

    徐晓达(1988−),男,山东人,高工,博士,主要从事结构风工程及预应力结构研究(E-mail: 13115279@bjtu.edu.cn)

    通讯作者:

    杨庆山(1968−),男,河北人,教授,博士,主要从事从事结构风工程和古建筑木结构研究(E-mail: qshyang@cqu.edu.cn)

  • 中图分类号: TU312+.1

SPATIAL AND TEMPORAL STATISTICAL CHARACTERISTICS OF THE WIND FIELD OF THUNDERSTORM OUTFLOWS BASED ON MEASURED DATA IN BEIJING URBAN AREA

  • 摘要: 雷暴风引发的结构破坏、财产损失和人员伤害屡有发生,其风场特性的认识和研究是结构抗雷暴风设计的基础。该文基于北京市区325 m高气象塔实测数据识别的70个雷暴风事件,采用经典雷暴风模型对其平均风及脉动风时空特性等进行了统计分析,研究结果表明:雷暴风频发于夏季,其峰值风速主要出现在北京时间的下午及傍晚时分且较易发生于西北方向;在峰值风速发生时段,平均风速剖面均值呈现轻微的鼻形特征;雷暴风湍流强度和阵风因子剖面与大尺度稳态强风特性存在较大差异,且雷暴风统计结果均大于大尺度稳态强风的对应值;北京市结构抗雷暴风设计中可考虑应用Von Karman谱计算雷暴风荷载。该研究结果可为雷暴风风场统一模型的建立和结构抗雷暴风设计提供参考。
  • 图  1  北京325 m高气象塔

    Figure  1.  Beijing 325 m high meteorological tower

    图  2  2016年9月7日雷暴风记录

    Figure  2.  Thunderstorm outflow recorded at Sep 7th, 2016

    图  3  雷暴风事件发生方向和日期(距原点的径向距离)

    Figure  3.  Direction and date (radial distance from the origin) of thunderstorm outflow event

    图  4  雷暴风事件发生时间分布图

    Figure  4.  Number of thunderstorm outflow events detected at different hours of the day

    图  5  不同高度归一化移动平均风速均值

    Figure  5.  The mean values of normalized slowly-varying mean wind speeds at each height

    图  6  雷暴风持续时间定义示意图

    Figure  6.  Schematic diagram of definition of thunderstorm outflow duration

    图  7  雷暴风事件时间分段示意图

    Figure  7.  Time segment of the thunderstorm outflow event

    图  8  典型实测雷暴风剖面图

    Figure  8.  Profiles of typical thunderstorm outflows

    图  9  雷暴风移动平均风速剖面随时间变化情况

    Figure  9.  The variation of moving average wind speed profiles with time of thunderstorm outflows

    图  10  折算脉动风速概率密度直方图及与之对应的高斯曲线

    Figure  10.  Probability density function of reduced turbulent fluctuation and the corresponding Gaussian distribution

    图  11  湍流强度剖面

    Figure  11.  Turbulence intensity profiles

    图  12  湍流强度与h/z0${\overline V_{\max }}$的关系图

    Figure  12.  Function of the turbulence intensity with h/z0 and ${\overline V_{\max }}$

    图  13  湍流积分尺度与h/z0${\overline V_{\max }}$的关系图

    Figure  13.  Function of the turbulence integral length scale with h/z0 and ${\overline V_{\max }}$

    图  14  湍流积分尺度剖面

    Figure  14.  Turbulence integral length scale profiles

    图  15  不同高度折算脉动风速功率谱密度曲线图

    Figure  15.  Power spectral density of reduced turbulent fluctuation at different heights

    图  16  折算脉动风速功率谱密度

    Figure  16.  Power spectral density of reduced turbulent fluctuation

    图  17  不同方法获得湍流积分尺度对比图

    Figure  17.  Comparison of turbulence integral length scale obtained by different methods

    图  18  阵风因子与h/z0${\overline V_{\max }}$的关系图

    Figure  18.  Function of the gust factor with h/z0 and ${\overline V_{\max }}$

    表  1  不同高度雷暴风风速特性

    Table  1.   Wind speed characteristics of the thunderstorm outflow event at different heights

    高度h/m阵风风速峰值$ \hat{V} $10 min移动平均风速均值$\overline{{V}}_{10}$1 h移动平均风速均值$\overline{{V}}_{60}$10 min移动湍流强度均值$ \bar{I} $阵风因子$G_{V}$10 min阵风因子$ G_{10} $10 min偏度$ \gamma_{10} $10 min峰值$K_{10}$1 h偏度$\gamma_{60}$1 h峰值$\kappa_{60}$
    816.525.492.580.401.663.010.864.232.157.97
    1617.667.413.420.321.492.380.613.821.816.20
    3221.5910.754.710.211.332.010.363.051.795.64
    4723.2813.075.250.171.241.780.362.831.403.99
    6423.0914.055.480.161.171.640.242.181.383.99
    8023.7514.795.780.151.121.610.072.051.313.71
    14028.3518.887.300.111.211.500.002.480.982.71
    20029.1421.318.450.061.111.37−0.132.340.832.33
    28029.8022.348.370.051.071.33−0.072.150.852.37
    下载: 导出CSV

    表  2  不同高度雷暴风持时特征

    Table  2.   Characteristics of duration of thunderstorm outflows at different heights

    高度h/mM(Ti)C(Ti)N(Ti)M(Td)C(Td)N(Td)M(Tt)C(Tt)N(Tt)
    844.630.6414.9049.680.7214.6094.310.5334.80
    1647.990.655.8057.110.765.90105.100.5212.60
    3276.700.8413.30104.651.6721.30181.351.0635.20
    4778.730.7618.5082.620.8614.80161.350.6443.40
    6484.740.9011.90114.840.6918.10199.590.6335.10
    8094.390.8515.70109.980.7811.90204.370.6331.20
    140144.140.8918.20223.680.8416.00367.810.7134.20
    200191.530.8120.80342.100.9420.40533.630.7742.70
    280177.560.8618.50415.890.9419.80593.440.7839.40
    下载: 导出CSV

    表  3  雷暴风记录折算脉动风速均值、标准差、偏度及峰度的平均值和标准差

    Table  3.   The mean and standard deviation of mean, standard deviation, skewness and kurtosis of reduced turbulent fluatuation for the thunderstorm outflow records detected

    统计特性均值$m$标准差$\sigma $偏度$\gamma $峰度$\kappa $
    平均值−0.011.000.052.87
    标准差0.020.010.210.38
    下载: 导出CSV

    表  4  不同高度阵风因子值

    Table  4.   Gust factors at different heights

    高度h/m 雷暴风发展时间段
    t−5 t−4 t−3 t−2 t−1 t t1 t2 t3 t4 t5
    8 1.44 1.42 1.44 1.45 1.48 1.53 1.53 1.50 1.47 1.42 1.38
    16 1.39 1.35 1.37 1.35 1.37 1.48 1.48 1.41 1.38 1.34 1.33
    32 1.29 1.30 1.29 1.27 1.30 1.35 1.35 1.33 1.32 1.27 1.26
    47 1.29 1.33 1.29 1.29 1.30 1.36 1.35 1.33 1.30 1.28 1.30
    64 1.26 1.29 1.26 1.26 1.25 1.31 1.31 1.31 1.27 1.27 1.28
    80 1.26 1.28 1.25 1.24 1.26 1.27 1.28 1.31 1.28 1.26 1.25
    140 1.19 1.23 1.19 1.22 1.20 1.26 1.23 1.25 1.20 1.23 1.18
    200 1.18 1.19 1.17 1.19 1.17 1.17 1.21 1.20 1.18 1.21 1.18
    280 1.23 1.26 1.27 1.22 1.19 1.17 1.20 1.21 1.18 1.19 1.16
    下载: 导出CSV
  • [1] ZHANG S, SOLARI G, DE GAETANO P, et al. A refined analysis of thunderstorm outflow characteristics relevant to the wind loading of structures [J]. Probabilistic Engineering Mechanics, 2018, 54: 9 − 24. doi: 10.1016/j.probengmech.2017.06.003
    [2] 褚云朋, 孙鑫晖, 李明, 等. 下击暴流作用下菱形马鞍面屋盖风压特性[J]. 工程力学, 2022, 39(3): 182 − 192. doi: 10.6052/j.issn.1000-4750.2021.01.0091

    CHU Yunpeng, SUN Xinhui, LI Ming, et al. Wind pressures on a large-span hyperbolic-paraboloid roof subjected to a simulated downburst [J]. Engineering Mechanics, 2022, 39(3): 182 − 192. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0091
    [3] 宋淳宸, 苏延文, 黄国庆, 等. 基于多元EMD-AM/FM分解的多点非平稳雷暴风速模拟[J]. 工程力学, 2019, 36(7): 109 − 115, 125. doi: 10.6052/j.issn.1000-4750.2018.03.0148

    SONG Chunchen, SU Yanwen, HUANG Guoqing, et al. Simulation of multivariate non-stationary thunderstorm based on MEMD-AM/FM decomposition [J]. Engineering Mechanics, 2019, 36(7): 109 − 115, 125. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0148
    [4] 谢强, 张勇, 李杰. 华东电网500 kV任上5237线飑线风致倒塔事故调查分析[J]. 电网技术, 2006, 30(10): 59 − 63, 89. doi: 10.3321/j.issn:1000-3673.2006.10.012

    XIE Qiang, ZHANG Yong, LI Jie. Investigation on tower collapses of 500 kV Renshang 5237 Transmission line caused by downburst [J]. Power System Technology, 2006, 30(10): 59 − 63, 89. (in Chinese) doi: 10.3321/j.issn:1000-3673.2006.10.012
    [5] 程月星, 孙继松, 戴高菊, 等. 2016年北京地区一次雷暴大风的观测研究[J]. 气象, 2018, 44(12): 1529 − 1541. doi: 10.7519/j.issn.10000526.2018.12.003

    CHENG Yuexing, SUN Jisong, DAI Gaoju, et al. Study on a thunderstorm event over Beijing in 2016 [J]. Meteorological Monthly, 2018, 44(12): 1529 − 1541. (in Chinese) doi: 10.7519/j.issn.10000526.2018.12.003
    [6] ZHANG S, SOLARI G, YANG Q S, et al. Extreme wind speed distribution in a mixed wind climate [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 239 − 253. doi: 10.1016/j.jweia.2018.03.019
    [7] BRUSCO S, SOLARI G. Transient aeroelasticity of structures subjected to thunderstorm outflows [J]. Engineering Structures, 2021, 245: 112801. doi: 10.1016/j.engstruct.2021.112801
    [8] 李波, 陈文龙, 杨庆山, 等. 下击暴流作用下高速列车运行安全性能评估[J]. 工程力学, 2021, 38(10): 248 − 256. doi: 10.6052/j.issn.1000-4750.2020.09.0640

    LI Bo, CHEN Wenlong, YANG Qingshan, et al. Evaluating the safety of high-speed trains at the action of downburst [J]. Engineering Mechanics, 2021, 38(10): 248 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0640
    [9] 李艺, 黄国庆, 程旭, 等. 移动型下击暴流及其作用下高层建筑风荷载的数值模拟[J]. 工程力学, 2020, 37(3): 176 − 187. doi: 10.6052/j.issn.1000-4750.2019.04.0231

    LI Yi, HUANG Guoqing, CHENG Xu, et al. The numerical simulation of moving downbursts and their induced wind load on high-rise buildings [J]. Engineering Mechanics, 2020, 37(3): 176 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0231
    [10] 吴庆梅, 郭虎, 杨波, 等. 地形和城市热力环流对北京地区一次β中尺度暴雨的影响[J]. 气象, 2009, 35(12): 58 − 64. doi: 10.7519/j.issn.1000-0526.2009.12.008

    WU Qingmei, GUO Hu, YANG Bo, et al. Effects of topography and urban heat circulation on a Meso-β torrential rain in Beijing area [J]. Meteorological Monthly, 2009, 35(12): 58 − 64. (in Chinese) doi: 10.7519/j.issn.1000-0526.2009.12.008
    [11] SOLARI G, BURLANDO M, DE GAETANO P, et al. Characteristics of thunderstorms relevant to the wind loading of structures [J]. Wind and Structures, 2015, 20(6): 763 − 791. doi: 10.12989/was.2015.20.6.763
    [12] ZHANG S, LI B, SOLARI G, et al. A Refined study of atmospheric wind properties in the Beijing Urban Area based on a 325 m meteorological tower [J]. Atmosphere, 2021, 12(6): 786. doi: 10.3390/atmos12060786
    [13] ZHANG S, YANG Q S, SOLARI G, et al. Characteristics of thunderstorm outflows in Beijing urban area [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 195: 104011. doi: 10.1016/j.jweia.2019.104011
    [14] CHEN L Z, LETCHFORD C W. A deterministic–stochastic hybrid model of downbursts and its impact on a cantilevered structure [J]. Engineering Structures, 2004, 26(5): 619 − 629. doi: 10.1016/j.engstruct.2003.12.009
    [15] 毕文哲, 田利. 下击暴流作用下输电塔-线体系倒塌破坏研究[J]. 工程力学, 2022, 39(增刊): 78 − 83. doi: 10.6052/j.issn.1000-4750.2021.05.S012

    BI Wenzhe, TIAN Li. Study on the collapse failure of transmission tower-line system under downburst [J]. Engineering Mechanics, 2022, 39(Suppl): 78 − 83. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.S012
    [16] 徐晓达. 超高层建筑周边行人高度处平均风速分布特性及风环境评估[D]. 北京: 北京交通大学, 2019.

    XU Xiaoda. Characteristics of mean wind speed distributions and wind environment assessment at pedestrian-level height around super-tall buildings [D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [17] GB 50009−2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.

    GB 50009−2012, Load code for the design of building structures [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
    [18] 张鑫鑫, 李波, 张石, 等. 基于北京中心城区实测的城市边界层风场特性[J]. 建筑结构学报, 2022, 43(3): 109 − 117. doi: 10.14006/j.jzjgxb.2020.0432

    ZHANG Xinxin, LI Bo, ZHANG Shi, et al. Characteristics of wind field in urban boundary layer based on measured data in central Beijing [J]. Journal of Building Structures, 2022, 43(3): 109 − 117. (in Chinese) doi: 10.14006/j.jzjgxb.2020.0432
    [19] DE GAETANO P, PIA REPETTO M, REPETTO T, et al. Separation and classification of extreme wind events from anemometric records [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 126: 132 − 143. doi: 10.1016/j.jweia.2014.01.006
    [20] 秦丽, 李耀东, 高守亭. 北京地区雷暴大风的天气-气候学特征研究[J]. 气候与环境研究, 2006, 11(6): 754 − 762. doi: 10.3969/j.issn.1006-9585.2006.06.010

    QIN Li, LI Yaodong, GAO Shouting. The synoptic and climatic characteristic studies of thunderstorm winds in Beijing [J]. Climatic and Environmental Research, 2006, 11(6): 754 − 762. (in Chinese) doi: 10.3969/j.issn.1006-9585.2006.06.010
    [21] BURLANDO M, ZHANG S, SOLARI G. Monitoring, cataloguing, and weather scenarios of thunderstorm outflows in the northern Mediterranean [J]. Natural Hazards and Earth System Sciences, 2018, 18(9): 2309 − 2330. doi: 10.5194/nhess-18-2309-2018
    [22] LI X, LI S P, SU Y, et al. Study on the time-varying extreme value characteristic of the transient loads on a 5: 1 rectangular cylinder subjected to a thunderstorm-like wind [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 229: 105161. doi: 10.1016/j.jweia.2022.105161
    [23] KWON D K, KAREEM A. Gust-front factor: New framework for wind load effects on structures [J]. Journal of Structural Engineering, 2009, 135(6): 717 − 732. doi: 10.1061/(ASCE)0733-9445(2009)135:6(717)
    [24] FLAY R G J, STEVENSON D C. Integral length scales in strong winds below 20 m [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28(1/2/3): 21 − 30.
    [25] 黄本才. 结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2001: 57.
    HUANG Bencai. Principle and application of structural wind resistance analysis [M]. Shanghai: Tongji University Press, 2001:57.
    [26] Architecture Institute of Japan. AIJ Recommendations for loads on buildings: AIJ 2015 [M]. Tokyo: Architectural Institute of Japan, 2015.
    [27] European Committee for Standardization. Eurocode 1: Actions on structures — General actions — Part 1-4: Wind actions: 2004 [S]. Brussels: European Committee of Standardization, 2004.
    [28] 陈超豪, 王子茹, 霍林生, 等. 实测下击暴流风场特性分析[J]. 土木与环境工程学报(中英文), 2022, 44(1): 126 − 133.

    CHEN Chaohao, WANG Ziru, HUO Linsheng, et al. Analysis of wind field characteristics of measured downburst [J]. Journal of Civil and Environmental Engineering, 2022, 44(1): 126 − 133. (in Chinese)
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  15
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 修回日期:  2022-10-28
  • 网络出版日期:  2022-11-28
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回