留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壳体断裂力学统一计算理论与飞行器结构设计

庄茁 王恒 宁宇 王翔 柳占立 张志楠

庄茁, 王恒, 宁宇, 王翔, 柳占立, 张志楠. 壳体断裂力学统一计算理论与飞行器结构设计[J]. 工程力学, 2023, 40(2): 1-7. doi: 10.6052/j.issn.1000-4750.2022.06.ST02
引用本文: 庄茁, 王恒, 宁宇, 王翔, 柳占立, 张志楠. 壳体断裂力学统一计算理论与飞行器结构设计[J]. 工程力学, 2023, 40(2): 1-7. doi: 10.6052/j.issn.1000-4750.2022.06.ST02
ZHUANG Zhuo, WANG Heng, NING Yu, WANG Xiang, LIU Zhan-li, ZHANG Zhi-nan. UNIFIED COMPUTATIONAL THEORY OF FRACTURE MECHANICS IN SHELL AND AIRCRAFT STRUCTURAL DESIGN[J]. Engineering Mechanics, 2023, 40(2): 1-7. doi: 10.6052/j.issn.1000-4750.2022.06.ST02
Citation: ZHUANG Zhuo, WANG Heng, NING Yu, WANG Xiang, LIU Zhan-li, ZHANG Zhi-nan. UNIFIED COMPUTATIONAL THEORY OF FRACTURE MECHANICS IN SHELL AND AIRCRAFT STRUCTURAL DESIGN[J]. Engineering Mechanics, 2023, 40(2): 1-7. doi: 10.6052/j.issn.1000-4750.2022.06.ST02

壳体断裂力学统一计算理论与飞行器结构设计

doi: 10.6052/j.issn.1000-4750.2022.06.ST02
基金项目: 国家自然科学基金面上项目(10272060)
详细信息
    作者简介:

    王 恒(1986−),男,山西文水人,高工,博士,主要从事固体力学研究(E-mail: wang_heng03@126.com)

    宁 宇(1982−),男,福建邵武人,研究员,硕士,副院长,主要从事飞机强度研究(E-mail: ningy001@avic.com)

    王 翔(1973−),男,新疆库尔勒人,研究员,博士,主要从事空间站研究(E-mail: wangxiang0223@gmail.com

    柳占立(1981−),男,河南扶沟人,教授,博士,主要从事固体力学研究(E-mail: liuzhanli@tsinghua.edu.cn)

    张志楠(1986−),男,陕西咸阳人,高工,硕士,主要从事飞机强度研究(E-mail: zhangzhinan198678@126.com)

    通讯作者:

    庄 茁(1952−),男,辽宁沈阳人,教授,博士,主要从事固体力学研究(E-mail: zhuangz@tsinghua.edu.cn)

  • 中图分类号: V22;V42

UNIFIED COMPUTATIONAL THEORY OF FRACTURE MECHANICS IN SHELL AND AIRCRAFT STRUCTURAL DESIGN

  • 摘要: 断裂力学理论和方法在飞行器结构设计中发挥着不可替代的作用。依据断裂准则划分为阻止或者驱动裂纹扩展。阻止裂纹扩展是避免飞行器结构发生灾难性事故的最后一道防线,如机翼、机身等重要结构的止裂安全性设计、广布疲劳损伤容限设计等;驱动裂纹扩展是实现飞行器结构快速分离的关键技术,如运载火箭级间和星箭分离、飞行员和航天员逃逸救生等。板壳是飞行器结构的主要形式,开展板壳断裂力学研究具有重要的科学意义和工程价值。该文提出了基于连续体的壳体断裂力学统一计算理论,发展了壳体扩展有限元方法。基于该理论和方法,阐述了大变形曲面壳体裂纹扩展与止裂的计算分析过程,展示了在国产大飞机机翼整体结构件设计、天和号核心舱结构研制和高级教练机穿盖弹射救生系统设计等飞行器工程中的成功应用。
  • 图  1  传统板壳断裂理论

    Figure  1.  Classical plate-shell fracture theory

    图  2  基于连续体的壳体断裂及裂纹扩展

    Figure  2.  Continuum based shell fracture and crack propagation in the shel

    图  3  变厚度壳体结构三维裂纹翼形路径

    Figure  3.  3-dimensional wing-crack growth in variable thickness shell structure

    图  4  整体翼板断裂分析和试验验证

    Figure  4.  Fracture analysis and experiment for integrated wing plate

    图  5  由加筋板整体加工成形的天和号核心舱圆柱壳结构

    Figure  5.  Cylindrical shell structure of Tianhe core cabin formed by integrated reinforced plate

    图  6  座舱透明件裂纹扩展路径的理论设计

    Figure  6.  Theoretical design for cracking path in cabin clear parts

    图  7  扩展长度的理论设计与试验验证

    Figure  7.  Theoretical design and experiment verification of cracking length

    图  8  裂纹扩展长度的模拟

    Figure  8.  Crack propagation length by simulations

  • [1] ZHUANG Z, CHENG B B. A novel enriched CB shell element method for simulating arbitrary crack growth in pipes [J]. Science China Physics, Mechanics and Astronomy, 2011, 54(8): 1520 − 1531. doi: 10.1007/s11433-011-4385-y
    [2] ZHUANG Z, CHENG B B. Equilibrium state of mode-I sub-interfacial crack growth in bi-materials [J]. International Journal of Fracture, 2011, 170(1): 27 − 36. doi: 10.1007/s10704-011-9599-5
    [3] ZHUANG Z, CHENG B B. Development of X-FEM methodology and study on mixed-mode crack propagation [J]. Acta Mechanica Sinica, 2011, 27(3): 406 − 415. doi: 10.1007/s10409-011-0436-x
    [4] BELYTSCHKO T, LIU W K, MORAN B. Nonlinear finite elements for continua and structures [M]. New York: John Wiley & Sons, Ltd, 2000.
    [5] AHMAD S, IRONS B M, ZIENKIEWICZ O C. Analysis of thick and thin shell structures by curved finite elements [J]. International Journal for Numerical Methods in Engineering, 1970, 2(3): 419 − 451. doi: 10.1002/nme.1620020310
    [6] HUGHES T J R, LIU W K. Nonlinear finite element analysis of shells-Part II. Two-dimensional shells [J]. Computer Methods in Applied Mechanics and Engineering, 1981, 27(2): 167 − 181. doi: 10.1016/0045-7825(81)90148-1
    [7] HUGHES T J R, LIU W K. Nonlinear finite element analysis of shells: Part I. Three-dimensional shells [J]. Computer Methods in Applied Mechanics and Engineering, 1981, 26(3): 331 − 362. doi: 10.1016/0045-7825(81)90121-3
    [8] BUECHTER N, RAMM E. Shell theory versus degeneration – a comparison in large rotation finite element analysis [J]. International Journal for Numerical Methods in Engineering, 1992, 34(1): 39 − 59. doi: 10.1002/nme.1620340105
    [9] SIMO J C, FOX D D. On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization [J]. Computer Methods in Applied Mechanics and Engineering, 1989, 72(3): 267 − 304. doi: 10.1016/0045-7825(89)90002-9
    [10] 庄茁, 柳占立, 成斌斌, 等. 扩展有限单元法 [M]. 北京: 清华大学出版社, 2012.

    ZHUANG Zhuo, LIU Zhanli, CHENG Binbin, et al. Extended finite element method [M]. Beijing: Tsinghua University Press, 2012. (in Chinese)
    [11] LIN Z J, ZHUANG Z, YOU X C, et al. Enriched goal-oriented error estimation applied to fracture mechanics problems solved by XFEM [J]. Acta Mechanica Solida Sinica, 2012, 25(4): 393 − 403. doi: 10.1016/S0894-9166(12)60035-4
    [12] LIN Z J, ZHUANG Z. Enriched goal-oriented error estimation for fracture problems solved by continuum-based shell extended finite element method [J]. Applied Mathematics and Mechanics, 2014, 35(1): 33 − 48. doi: 10.1007/s10483-014-1770-8
    [13] ZENG Q L, LIU Z L, XU D D, et al. Modeling arbitrary crack propagation in coupled shell/solid structures with X-FEM [J]. International Journal for Numerical Methods in Engineering, 2016, 106(12): 1018 − 1040. doi: 10.1002/nme.5157
    [14] ZENG Q L, LIU Z L, XU D D, et al. Modeling stationary and moving cracks in shells by X-FEM with CB shell elements [J]. Science China Technological Sciences, 2014, 57(7): 1276 − 1284. doi: 10.1007/s11431-014-5589-y
    [15] MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131 − 150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
    [16] XU D D, LIU Z L, LIU X M, et al. Modeling of dynamic crack branching by enhanced extended finite element method [J]. Computational Mechanics, 2014, 54(2): 489 − 502. doi: 10.1007/s00466-014-1001-9
    [17] WANG H, LIU Z L, XU D D, et al. Extended finite element method analysis for shielding and amplification effect of a main crack interacted with a group of nearby parallel microcracks [J]. International Journal of Damage Mechanics, 2016, 25(1): 4 − 25. doi: 10.1177/1056789514565933
  • 加载中
图(8)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  24
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-07-15
  • 网络出版日期:  2022-11-10
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回