[1] |
ZHUANG Z, CHENG B B. A novel enriched CB shell element method for simulating arbitrary crack growth in pipes [J]. Science China Physics, Mechanics and Astronomy, 2011, 54(8): 1520 − 1531. doi: 10.1007/s11433-011-4385-y
|
[2] |
ZHUANG Z, CHENG B B. Equilibrium state of mode-I sub-interfacial crack growth in bi-materials [J]. International Journal of Fracture, 2011, 170(1): 27 − 36. doi: 10.1007/s10704-011-9599-5
|
[3] |
ZHUANG Z, CHENG B B. Development of X-FEM methodology and study on mixed-mode crack propagation [J]. Acta Mechanica Sinica, 2011, 27(3): 406 − 415. doi: 10.1007/s10409-011-0436-x
|
[4] |
BELYTSCHKO T, LIU W K, MORAN B. Nonlinear finite elements for continua and structures [M]. New York: John Wiley & Sons, Ltd, 2000.
|
[5] |
AHMAD S, IRONS B M, ZIENKIEWICZ O C. Analysis of thick and thin shell structures by curved finite elements [J]. International Journal for Numerical Methods in Engineering, 1970, 2(3): 419 − 451. doi: 10.1002/nme.1620020310
|
[6] |
HUGHES T J R, LIU W K. Nonlinear finite element analysis of shells-Part II. Two-dimensional shells [J]. Computer Methods in Applied Mechanics and Engineering, 1981, 27(2): 167 − 181. doi: 10.1016/0045-7825(81)90148-1
|
[7] |
HUGHES T J R, LIU W K. Nonlinear finite element analysis of shells: Part I. Three-dimensional shells [J]. Computer Methods in Applied Mechanics and Engineering, 1981, 26(3): 331 − 362. doi: 10.1016/0045-7825(81)90121-3
|
[8] |
BUECHTER N, RAMM E. Shell theory versus degeneration – a comparison in large rotation finite element analysis [J]. International Journal for Numerical Methods in Engineering, 1992, 34(1): 39 − 59. doi: 10.1002/nme.1620340105
|
[9] |
SIMO J C, FOX D D. On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization [J]. Computer Methods in Applied Mechanics and Engineering, 1989, 72(3): 267 − 304. doi: 10.1016/0045-7825(89)90002-9
|
[10] |
庄茁, 柳占立, 成斌斌, 等. 扩展有限单元法 [M]. 北京: 清华大学出版社, 2012.ZHUANG Zhuo, LIU Zhanli, CHENG Binbin, et al. Extended finite element method [M]. Beijing: Tsinghua University Press, 2012. (in Chinese)
|
[11] |
LIN Z J, ZHUANG Z, YOU X C, et al. Enriched goal-oriented error estimation applied to fracture mechanics problems solved by XFEM [J]. Acta Mechanica Solida Sinica, 2012, 25(4): 393 − 403. doi: 10.1016/S0894-9166(12)60035-4
|
[12] |
LIN Z J, ZHUANG Z. Enriched goal-oriented error estimation for fracture problems solved by continuum-based shell extended finite element method [J]. Applied Mathematics and Mechanics, 2014, 35(1): 33 − 48. doi: 10.1007/s10483-014-1770-8
|
[13] |
ZENG Q L, LIU Z L, XU D D, et al. Modeling arbitrary crack propagation in coupled shell/solid structures with X-FEM [J]. International Journal for Numerical Methods in Engineering, 2016, 106(12): 1018 − 1040. doi: 10.1002/nme.5157
|
[14] |
ZENG Q L, LIU Z L, XU D D, et al. Modeling stationary and moving cracks in shells by X-FEM with CB shell elements [J]. Science China Technological Sciences, 2014, 57(7): 1276 − 1284. doi: 10.1007/s11431-014-5589-y
|
[15] |
MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131 − 150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
|
[16] |
XU D D, LIU Z L, LIU X M, et al. Modeling of dynamic crack branching by enhanced extended finite element method [J]. Computational Mechanics, 2014, 54(2): 489 − 502. doi: 10.1007/s00466-014-1001-9
|
[17] |
WANG H, LIU Z L, XU D D, et al. Extended finite element method analysis for shielding and amplification effect of a main crack interacted with a group of nearby parallel microcracks [J]. International Journal of Damage Mechanics, 2016, 25(1): 4 − 25. doi: 10.1177/1056789514565933
|