基于能力谱的弯剪复合型金属阻尼器加固既有混凝土框架性能化抗震设计方法

郭磊, 王静峰, 王涛, 王翰斓

郭磊, 王静峰, 王涛, 王翰斓. 基于能力谱的弯剪复合型金属阻尼器加固既有混凝土框架性能化抗震设计方法[J]. 工程力学, 2024, 41(7): 78-87. DOI: 10.6052/j.issn.1000-4750.2022.05.0486
引用本文: 郭磊, 王静峰, 王涛, 王翰斓. 基于能力谱的弯剪复合型金属阻尼器加固既有混凝土框架性能化抗震设计方法[J]. 工程力学, 2024, 41(7): 78-87. DOI: 10.6052/j.issn.1000-4750.2022.05.0486
GUO Lei, WANG Jing-feng, WANG Tao, WANG Han-lan. SEISMIC DESIGN OF CONCRETE FRAMES UPGRADED BY SHEAR-BENDING COMBINED METALLIC DAMPERS BASED ON CAPACITY CURVE METHOD[J]. Engineering Mechanics, 2024, 41(7): 78-87. DOI: 10.6052/j.issn.1000-4750.2022.05.0486
Citation: GUO Lei, WANG Jing-feng, WANG Tao, WANG Han-lan. SEISMIC DESIGN OF CONCRETE FRAMES UPGRADED BY SHEAR-BENDING COMBINED METALLIC DAMPERS BASED ON CAPACITY CURVE METHOD[J]. Engineering Mechanics, 2024, 41(7): 78-87. DOI: 10.6052/j.issn.1000-4750.2022.05.0486

基于能力谱的弯剪复合型金属阻尼器加固既有混凝土框架性能化抗震设计方法

基金项目: 中国地震局工程力学研究所基本科研业务费专项项目(2020EEEVL0414);国家自然科学基金项目(52178136)
详细信息
    作者简介:

    郭 磊(1995−),男,安徽人,博士,主要从事组合结构和消能减震技术研究(E-mail: lguo1866@163.com)

    王 涛(1977−),男,山东人,研究员,博士,从事结构抗震试验方法、建筑地震易损性等方面的研究(E-mail: wangtao@iem.ac.cn)

    王翰斓(1997−),男,湖北人,硕士,主要从事工程结构抗震研究(E-mail: hlwang1997@163.com)

    通讯作者:

    王静峰(1976−),男,安徽人,教授,博士,主要从事钢结构与组合结构研究(E-mail: jfwang008@163.com)

  • 中图分类号: TU528.571

SEISMIC DESIGN OF CONCRETE FRAMES UPGRADED BY SHEAR-BENDING COMBINED METALLIC DAMPERS BASED ON CAPACITY CURVE METHOD

  • 摘要:

    随着近年来中国对建筑结构的抗震性能要求不断提高,既有混凝土框架难以满足多水准抗震性能标准的要求,采用金属阻尼器加固既有混凝土框架可显著提高其抗震性能,有利于满足现有抗震性能目标,然而目前对于相应的的性能化抗震设计方法研究尚不充分。该文提出了基于能力谱的金属阻尼器加固既有混凝土框架抗震性能化设计方法,为了实现不同烈度地震下的多性能水准目标,采用具有多阶屈服特征的弯剪复合型金属阻尼器。基于对既有混凝土框架的静力推覆分析,将框架的推覆曲线转化为等效的双折线能力谱,设定加固后结构在多遇、设防和罕遇地震下的层间位移角性能目标,确定结构能力谱曲线和需求谱曲线的交点。考虑金属阻尼器进入屈服阶段后的附加阻尼比,计算出结构在不同烈度地震下的等效阻尼比,根据性能点计算出金属阻尼器剪切和弯曲芯板的屈服承载力。基于上述设计方法对4层、6层和9层既有混凝土框架进行加固,通过OpenSees软件建立弹塑性分析模型,并通过试验结果验证了模型的准确性,通过时程分析结果表明了加固后的结构满足预定的性能目标,证明了提出的设计方法的可靠性和有效性。该文研究成果将为金属阻尼器加固既有混凝土框架的抗震设计提供理论依据。

    Abstract:

    With the increasing seismic performance requirements of structures in recent years, existing concrete frames could not meet the requirements of multi seismic performance objectives. Adding metallic damper in existing concrete frames could significantly improve their seismic performance to meet current performance objectives. However, there is still lack of seismic design method for concrete frames upgraded by metallic damper. This paper proposed a seismic design method for concrete frames upgraded by metallic damper based on the capacity curve method, in which the shear-bending combined damper with multi-stage yielding feature was incorporated to achieve various performance objectives under different earthquake intensities. The equivalent bilinear capacity of concrete frames was obtained based on pushover results. The intersection points between the capacity curve of upgraded structure and demand spectrum could be determined after setting story drift performance objectives under frequently occurred, design-based and maximum considered earthquakes. The equivalent damping of the whole structure was calculated considering the additional viscous damping after the yielding of metallic damper. The yielding strength of shear and bending plates of metallic damper could be calculated through the performance intersection points. Following the design process, shear-bending combined dampers were designed to upgrade the 4-story, 6-story and 9-story concrete frames. The analytical modelling of the structures was established using OpenSees software and verified against the experimental results. It showed that the upgraded structures could meet the desired performance objectives through time-history analyses, indicating the efficiency and reliability of the design method. The research results in this paper provided guidelines on seismic design of metallic damper to upgrade concrete frames.

  • 图  1   弯剪复合型金属阻尼器

    Figure  1.   Shear-bending combined metallic damper

    图  2   弯剪复合型金属阻尼器屈服承载力

    Figure  2.   Yield strength of shear-bending combined metallic damper

    图  3   框架能力谱曲线转化

    Figure  3.   Transformation of capacity curve for frame

    图  4   结构能力谱曲线示意图

    Figure  4.   Capacity curve of structure

    图  5   反应谱转化和折减

    Figure  5.   Transformation and reduction of design spectrum

    图  6   结构性能点示意图

    Figure  6.   Performance points of structure

    图  7   金属阻尼器滞回准则

    Figure  7.   Hysteretic rule of metallic damper

    图  8   混凝土框架布置图 /mm

    Figure  8.   Lay out of existing concrete frames

    图  9   结构分析模型

    Figure  9.   Structural modelling

    图  10   金属阻尼器试验和模拟结果对比

    Figure  10.   Comparison between test and modelling results of metallic damper

    图  11   结构时程分析结果

    Figure  11.   Time history analysis results of structures

    表  1   框架结构截面尺寸

    Table  1   Section sizes of existing concrete frame

    楼层数/层楼层柱截面尺寸/mm梁截面尺寸/mm
    41F~2F450×450200×450
    3F~4F400×400200×450
    61F500×500360×720
    2F~6F450×450360×720
    91F~3F550×550250×500
    4F~6F500×500250×500
    7F~9F450×450250×500
    下载: 导出CSV

    表  2   柱、梁、板构件配筋信息

    Table  2   Reinforcements of the columns, beams and slabs

    楼层数/层楼层构件配筋情况
    边柱配筋中柱配筋梁配筋
    41F1216
    8@100(4)
    1216
    8@100(4)
    220+316
    8@100(2)
    2F818
    8@100(3)
    818
    8@100(3)
    218+316
    8@100(2)
    3F~4F816
    8@100(3)
    816
    8@100(3)
    216+316
    8@100(2)
    61F~2F824
    8@100(4)
    824
    8@100(4)
    420+416
    8@100(4)
    3F~4F422+420
    8@100(3)
    822
    8@100(3)
    418+416
    8@100(4)
    5F~6F420+418
    8@100(3)
    820
    8@100(3)
    416+412
    8@100(4)
    91F~3F1616
    10@100(3)
    1616
    10@100(3)
    225+418
    10@100(2)
    4F~6F1216
    8@100(4)
    1216
    8@100(4)
    225+416
    10@100(2)
    7F~9F818
    8@100(3)
    818
    8@100(3)
    220+416
    10@100(2)
    下载: 导出CSV

    表  3   金属阻尼器屈服承载力

    Table  3   Yield strength of metallic damper

    楼层数/层楼层屈服承载力
    剪切芯板/kN弯曲芯板/kN
    41F36684
    2F39297
    3F31952
    4F12993
    61F420189
    2F475233
    3F362209
    4F251124
    5F16089
    6F6143
    91F30776
    2F422105
    3F38095
    4F31779
    5F23057
    6F19248
    7F16341
    8F14436
    9F6529
    下载: 导出CSV

    表  4   4层结构支撑和平台梁设计结果

    Table  4   Design of brace and steel beam /mm

    层数支撑H型钢平台梁H型钢
    翼缘
    厚度tf
    腹板
    厚度tb
    高度
    h
    宽度
    b
    翼缘
    厚度tf
    腹板
    厚度tb
    高度
    h
    宽度
    b
    1F1281601201410250200
    2F128140801410250200
    3F10610080128200150
    4F1068060108150100
    下载: 导出CSV

    表  5   4层结构包钢设计结果

    Table  5   Design of pasted steel plates /mm

    层数柱包钢板梁包钢板梁中包钢板化学锚栓型号
    长×宽l×b长×宽l×b长×宽l×b
    底层600×500M16
    1F600×500400×200
    400×400
    600×200
    600×400
    M16
    2F600×500400×200
    400×400
    600×200
    600×400
    M16
    3F600×450400×200
    400×400
    600×200
    600×400
    M16
    4F600×450400×200
    400×400
    600×200
    600×400
    M16
    下载: 导出CSV
  • [1] 王财权. 单跨框架结构翼墙加固抗震性能研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2012.

    WANG Caiquan. Analysis of the influence on single-span structural seismic capability by wing wall strengthening method [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2012. (in Chinese)

    [2] 张超, 翁大根, 彭林海. 震损钢筋混凝土结构减震加固研究进展[J]. 工程抗震与加固改造, 2012, 34(3): 112 − 120, 107. doi: 10.3969/j.issn.1002-8412.2012.03.021

    ZHANG Chao, WENG Dagen, PENG Linhai. Research review on seismic retrofit of earthquake-damage RC structure by using energy dissipation technology [J]. Earthquake Resistant Engineering and Retrofitting, 2012, 34(3): 112 − 120, 107. (in Chinese) doi: 10.3969/j.issn.1002-8412.2012.03.021

    [3] 陆超超, 王铁成, 赵海龙, 等. 增大截面法加固低配箍率钢筋混凝土柱抗震性能试验研究[J]. 工程抗震与加固改造, 2015, 37(6): 23 − 30. doi: 10.16226/j.issn.1002-8412.2015.06.004

    LU Chaochao, WANG Tiecheng, ZHAO Hailong, et al. Experimental study on seismic behavior of low stirrup ratio RC columns by enlarging section [J]. Earthquake Resistant Engineering and Retrofitting, 2015, 37(6): 23 − 30. (in Chinese) doi: 10.16226/j.issn.1002-8412.2015.06.004

    [4]

    YEN J Y R, CHIEN H K. Steel plates rehabilitated RC beam–column joints subjected to vertical cyclic loads [J]. Construction and Building Materials, 2010, 24(3): 332 − 339. doi: 10.1016/j.conbuildmat.2009.08.029

    [5]

    WU L Y, WANG Y L, HONG F. Simulated analysis for strengthening RC beam bonding with external steel plate [J]. Advanced Materials Research, 2010, 163/164/165/166/167: 3745 − 3748. doi: 10.4028/www.scientific.net/AMR.163-167.3745

    [6] 常正非, 杨志勇, 李书进. 碳纤维加固受损混凝土框架节点的试验研究[J]. 华中科技大学学报(自然科学版), 2016, 44(12): 64 − 69, 75. doi: 10.13245/j.hust.161211

    CHANG Zhengfei, YANG Zhiyong, LI Shujin. Experimental study on CFRP-strengthened damaged concrete column-beam joints [J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2016, 44(12): 64 − 69, 75. (in Chinese) doi: 10.13245/j.hust.161211

    [7]

    OVIEDO-AMEZQUITA J A, MIDORIKAWA M, ASARI T. Seismic performance of story drift-controlled RC frames with hysteretic dampers [J]. Earthquake Spectra, 2012, 28(4): 1569 − 1587. doi: 10.1193/1.4000092

    [8]

    BENAVENT-CLIMENT A, MORILLAS L, ESCOLANO-MARGARIT D. Seismic performance and damage evaluation of a reinforced concrete frame with hysteretic dampers through shake-table tests [J]. Earthquake Engineering & Structural Dynamics, 2014, 43(15): 2399 − 2417.

    [9] 尚庆学, 张锡朋, 王涛, 等. 墙式连接金属阻尼器RC框架振动台试验研究[J]. 土木工程学报, 2021, 54(9): 14 − 27, 128. doi: 10.15951/j.tmgcxb.2021.09.009

    SHANG Qingxue, ZHANG Xipeng, WANG Tao, et al. Shaking table test on RC frame installed with metallic dampers using wail-pattern connections [J]. China Civil Engineering Journal, 2021, 54(9): 14 − 27, 128. (in Chinese) doi: 10.15951/j.tmgcxb.2021.09.009

    [10] 种迅, 侯林兵, 解琳琳, 等. 含减震外挂墙板的装配式框架结构协同抗震性能研究[J]. 工程力学, 2021, 38(6): 209 − 217. doi: 10.6052/j.issn.1000-4750.2020.07.0471

    CHONG Xun, HOU Linbing, XIE Linlin, et al. Investigation on the collaborative seismic performance of prefabricated frame structures with energy dissipating cladding panels [J]. Engineering Mechanics, 2021, 38(6): 209 − 217. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0471

    [11] 潘超, 张瑞甫, 罗浩, 等. 金属阻尼器消能减震体系的等阻尼比设计方法[J]. 建筑结构学报, 2018, 39(3): 39 − 47. doi: 10.14006/j.jzjgxb.2018.03.006

    PAN Chao, ZHANG Ruifu, LUO Hao, et al. Constant damping ratio design method for damping controlled structures with metallic yielding dampers [J]. Journal of Building Structures, 2018, 39(3): 39 − 47. (in Chinese) doi: 10.14006/j.jzjgxb.2018.03.006

    [12] 吴山, 何浩祥, 兰炳稷, 等. 分级屈服型金属套管阻尼器减震理论与试验研究[J]. 工程力学, 2022, 39(7): 147 − 157. doi: 10.6052/j.issn.1000-4750.2021.04.0261

    WU Shan, HE Haoxiang, LAN Bingji, et al. Damping theory and experimental study on graded yielding metal tube dampers [J]. Engineering Mechanics, 2022, 39(7): 147 − 157. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.04.0261

    [13] 陈云, 蒋欢军, 刘涛, 等. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53 − 62. doi: 10.6052/j.issn.1000-4750.2018.01.0036

    CHEN Yun, JIANG Huanjun, LIU Tao, et al. Study on the seismic behavior of graded yielding metal dampers [J]. Engineering Mechanics, 2019, 36(3): 53 − 62. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0036

    [14]

    GUO L, WANG J F, WANG W Q, et al. Experimental, numerical and analytical study on seismic performance of shear-bending yielding coupling dampers [J]. Engineering Structures, 2021, 244: 112724. doi: 10.1016/j.engstruct.2021.112724

    [15]

    ASCE 7-10, Minimum design loads for buildings and other structures [S]. Washington: American Society of Civil Engineers, 2010.

    [16]

    ATC-40, Seismic evaluation and retrofit of concrete buildings [S]. Redwood City: Applied Technology Council, 1996.

    [17] GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)

    [18]

    AIJ. Guidelines for performance evaluation of earthquake resistant reinforced concrete buildings (draft) [S]. Tokyo, Japan: Architectural Institute of Japan, 2004.

    [19]

    DWAIRI H M, KOWALSKY M J, NAU J M. Equivalent damping in support of direct displacement-based design [J]. Journal of Earthquake Engineering, 2007, 11(4): 512 − 530. doi: 10.1080/13632460601033884

    [20]

    CHAO S H, GOEL S C, LEE S S. A seismic design lateral force distribution based on inelastic state of structures [J]. Earthquake Spectra, 2007, 23(3): 547 − 569. doi: 10.1193/1.2753549

    [21]

    FEMA P-695, Quantification of building seismic performance factors [S]. Washington: FEMA, 2009.

图(11)  /  表(5)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  44
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-28
  • 修回日期:  2022-10-03
  • 网络出版日期:  2022-11-24
  • 刊出日期:  2024-07-08

目录

    /

    返回文章
    返回