SEISMIC DESIGN OF CONCRETE FRAMES UPGRADED BY SHEAR-BENDING COMBINED METALLIC DAMPERS BASED ON CAPACITY CURVE METHOD
-
摘要:
随着近年来中国对建筑结构的抗震性能要求不断提高,既有混凝土框架难以满足多水准抗震性能标准的要求,采用金属阻尼器加固既有混凝土框架可显著提高其抗震性能,有利于满足现有抗震性能目标,然而目前对于相应的的性能化抗震设计方法研究尚不充分。该文提出了基于能力谱的金属阻尼器加固既有混凝土框架抗震性能化设计方法,为了实现不同烈度地震下的多性能水准目标,采用具有多阶屈服特征的弯剪复合型金属阻尼器。基于对既有混凝土框架的静力推覆分析,将框架的推覆曲线转化为等效的双折线能力谱,设定加固后结构在多遇、设防和罕遇地震下的层间位移角性能目标,确定结构能力谱曲线和需求谱曲线的交点。考虑金属阻尼器进入屈服阶段后的附加阻尼比,计算出结构在不同烈度地震下的等效阻尼比,根据性能点计算出金属阻尼器剪切和弯曲芯板的屈服承载力。基于上述设计方法对4层、6层和9层既有混凝土框架进行加固,通过OpenSees软件建立弹塑性分析模型,并通过试验结果验证了模型的准确性,通过时程分析结果表明了加固后的结构满足预定的性能目标,证明了提出的设计方法的可靠性和有效性。该文研究成果将为金属阻尼器加固既有混凝土框架的抗震设计提供理论依据。
-
关键词:
- 能力谱 /
- 弯剪复合型金属阻尼器 /
- 既有混凝土框架 /
- 抗震设计方法 /
- 加固设计
Abstract:With the increasing seismic performance requirements of structures in recent years, existing concrete frames could not meet the requirements of multi seismic performance objectives. Adding metallic damper in existing concrete frames could significantly improve their seismic performance to meet current performance objectives. However, there is still lack of seismic design method for concrete frames upgraded by metallic damper. This paper proposed a seismic design method for concrete frames upgraded by metallic damper based on the capacity curve method, in which the shear-bending combined damper with multi-stage yielding feature was incorporated to achieve various performance objectives under different earthquake intensities. The equivalent bilinear capacity of concrete frames was obtained based on pushover results. The intersection points between the capacity curve of upgraded structure and demand spectrum could be determined after setting story drift performance objectives under frequently occurred, design-based and maximum considered earthquakes. The equivalent damping of the whole structure was calculated considering the additional viscous damping after the yielding of metallic damper. The yielding strength of shear and bending plates of metallic damper could be calculated through the performance intersection points. Following the design process, shear-bending combined dampers were designed to upgrade the 4-story, 6-story and 9-story concrete frames. The analytical modelling of the structures was established using OpenSees software and verified against the experimental results. It showed that the upgraded structures could meet the desired performance objectives through time-history analyses, indicating the efficiency and reliability of the design method. The research results in this paper provided guidelines on seismic design of metallic damper to upgrade concrete frames.
-
-
表 1 框架结构截面尺寸
Table 1 Section sizes of existing concrete frame
楼层数/层 楼层 柱截面尺寸/mm 梁截面尺寸/mm 4 1F~2F 450×450 200×450 3F~4F 400×400 200×450 6 1F 500×500 360×720 2F~6F 450×450 360×720 9 1F~3F 550×550 250×500 4F~6F 500×500 250×500 7F~9F 450×450 250×500 表 2 柱、梁、板构件配筋信息
Table 2 Reinforcements of the columns, beams and slabs
楼层数/层 楼层 构件配筋情况 边柱配筋 中柱配筋 梁配筋 4 1F 12 16 8@100(4)12 16 8@100(4)2 20+3 16 8@100(2)2F 8 18 8@100(3)8 18 8@100(3)2 18+3 16 8@100(2)3F~4F 8 16 8@100(3)81 6 8@100(3)2 16+3 16 8@100(2)6 1F~2F 8 24 8@100(4)8 24 8@100(4)4 20+4 16 8@100(4)3F~4F 4 22+4 20 8@100(3)8 22 8@100(3)4 18+4 16 8@100(4)5F~6F 4 20+4 18 8@100(3)8 20 8@100(3)4 16+4 12 8@100(4)9 1F~3F 16 16 10@100(3)16 16 10@100(3)2 25+4 18 10@100(2)4F~6F 12 16 8@100(4)12 16 8@100(4)2 25+4 16 10@100(2)7F~9F 8 18 8@100(3)8 18 8@100(3)2 20+4 16 10@100(2)表 3 金属阻尼器屈服承载力
Table 3 Yield strength of metallic damper
楼层数/层 楼层 屈服承载力 剪切芯板/kN 弯曲芯板/kN 4 1F 366 84 2F 392 97 3F 319 52 4F 129 93 6 1F 420 189 2F 475 233 3F 362 209 4F 251 124 5F 160 89 6F 61 43 9 1F 307 76 2F 422 105 3F 380 95 4F 317 79 5F 230 57 6F 192 48 7F 163 41 8F 144 36 9F 65 29 表 4 4层结构支撑和平台梁设计结果
Table 4 Design of brace and steel beam
/mm 层数 支撑H型钢 平台梁H型钢 翼缘
厚度tf腹板
厚度tb高度
h宽度
b翼缘
厚度tf腹板
厚度tb高度
h宽度
b1F 12 8 160 120 14 10 250 200 2F 12 8 140 80 14 10 250 200 3F 10 6 100 80 12 8 200 150 4F 10 6 80 60 10 8 150 100 表 5 4层结构包钢设计结果
Table 5 Design of pasted steel plates
/mm 层数 柱包钢板 梁包钢板 梁中包钢板 化学锚栓型号 长×宽l×b 长×宽l×b 长×宽l×b 底层 600×500 — — M16 1F 600×500 400×200
400×400600×200
600×400M16 2F 600×500 400×200
400×400600×200
600×400M16 3F 600×450 400×200
400×400600×200
600×400M16 4F 600×450 400×200
400×400600×200
600×400M16 -
[1] 王财权. 单跨框架结构翼墙加固抗震性能研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2012. WANG Caiquan. Analysis of the influence on single-span structural seismic capability by wing wall strengthening method [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2012. (in Chinese)
[2] 张超, 翁大根, 彭林海. 震损钢筋混凝土结构减震加固研究进展[J]. 工程抗震与加固改造, 2012, 34(3): 112 − 120, 107. doi: 10.3969/j.issn.1002-8412.2012.03.021 ZHANG Chao, WENG Dagen, PENG Linhai. Research review on seismic retrofit of earthquake-damage RC structure by using energy dissipation technology [J]. Earthquake Resistant Engineering and Retrofitting, 2012, 34(3): 112 − 120, 107. (in Chinese) doi: 10.3969/j.issn.1002-8412.2012.03.021
[3] 陆超超, 王铁成, 赵海龙, 等. 增大截面法加固低配箍率钢筋混凝土柱抗震性能试验研究[J]. 工程抗震与加固改造, 2015, 37(6): 23 − 30. doi: 10.16226/j.issn.1002-8412.2015.06.004 LU Chaochao, WANG Tiecheng, ZHAO Hailong, et al. Experimental study on seismic behavior of low stirrup ratio RC columns by enlarging section [J]. Earthquake Resistant Engineering and Retrofitting, 2015, 37(6): 23 − 30. (in Chinese) doi: 10.16226/j.issn.1002-8412.2015.06.004
[4] YEN J Y R, CHIEN H K. Steel plates rehabilitated RC beam–column joints subjected to vertical cyclic loads [J]. Construction and Building Materials, 2010, 24(3): 332 − 339. doi: 10.1016/j.conbuildmat.2009.08.029
[5] WU L Y, WANG Y L, HONG F. Simulated analysis for strengthening RC beam bonding with external steel plate [J]. Advanced Materials Research, 2010, 163/164/165/166/167: 3745 − 3748. doi: 10.4028/www.scientific.net/AMR.163-167.3745
[6] 常正非, 杨志勇, 李书进. 碳纤维加固受损混凝土框架节点的试验研究[J]. 华中科技大学学报(自然科学版), 2016, 44(12): 64 − 69, 75. doi: 10.13245/j.hust.161211 CHANG Zhengfei, YANG Zhiyong, LI Shujin. Experimental study on CFRP-strengthened damaged concrete column-beam joints [J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2016, 44(12): 64 − 69, 75. (in Chinese) doi: 10.13245/j.hust.161211
[7] OVIEDO-AMEZQUITA J A, MIDORIKAWA M, ASARI T. Seismic performance of story drift-controlled RC frames with hysteretic dampers [J]. Earthquake Spectra, 2012, 28(4): 1569 − 1587. doi: 10.1193/1.4000092
[8] BENAVENT-CLIMENT A, MORILLAS L, ESCOLANO-MARGARIT D. Seismic performance and damage evaluation of a reinforced concrete frame with hysteretic dampers through shake-table tests [J]. Earthquake Engineering & Structural Dynamics, 2014, 43(15): 2399 − 2417.
[9] 尚庆学, 张锡朋, 王涛, 等. 墙式连接金属阻尼器RC框架振动台试验研究[J]. 土木工程学报, 2021, 54(9): 14 − 27, 128. doi: 10.15951/j.tmgcxb.2021.09.009 SHANG Qingxue, ZHANG Xipeng, WANG Tao, et al. Shaking table test on RC frame installed with metallic dampers using wail-pattern connections [J]. China Civil Engineering Journal, 2021, 54(9): 14 − 27, 128. (in Chinese) doi: 10.15951/j.tmgcxb.2021.09.009
[10] 种迅, 侯林兵, 解琳琳, 等. 含减震外挂墙板的装配式框架结构协同抗震性能研究[J]. 工程力学, 2021, 38(6): 209 − 217. doi: 10.6052/j.issn.1000-4750.2020.07.0471 CHONG Xun, HOU Linbing, XIE Linlin, et al. Investigation on the collaborative seismic performance of prefabricated frame structures with energy dissipating cladding panels [J]. Engineering Mechanics, 2021, 38(6): 209 − 217. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0471
[11] 潘超, 张瑞甫, 罗浩, 等. 金属阻尼器消能减震体系的等阻尼比设计方法[J]. 建筑结构学报, 2018, 39(3): 39 − 47. doi: 10.14006/j.jzjgxb.2018.03.006 PAN Chao, ZHANG Ruifu, LUO Hao, et al. Constant damping ratio design method for damping controlled structures with metallic yielding dampers [J]. Journal of Building Structures, 2018, 39(3): 39 − 47. (in Chinese) doi: 10.14006/j.jzjgxb.2018.03.006
[12] 吴山, 何浩祥, 兰炳稷, 等. 分级屈服型金属套管阻尼器减震理论与试验研究[J]. 工程力学, 2022, 39(7): 147 − 157. doi: 10.6052/j.issn.1000-4750.2021.04.0261 WU Shan, HE Haoxiang, LAN Bingji, et al. Damping theory and experimental study on graded yielding metal tube dampers [J]. Engineering Mechanics, 2022, 39(7): 147 − 157. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.04.0261
[13] 陈云, 蒋欢军, 刘涛, 等. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53 − 62. doi: 10.6052/j.issn.1000-4750.2018.01.0036 CHEN Yun, JIANG Huanjun, LIU Tao, et al. Study on the seismic behavior of graded yielding metal dampers [J]. Engineering Mechanics, 2019, 36(3): 53 − 62. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0036
[14] GUO L, WANG J F, WANG W Q, et al. Experimental, numerical and analytical study on seismic performance of shear-bending yielding coupling dampers [J]. Engineering Structures, 2021, 244: 112724. doi: 10.1016/j.engstruct.2021.112724
[15] ASCE 7-10, Minimum design loads for buildings and other structures [S]. Washington: American Society of Civil Engineers, 2010.
[16] ATC-40, Seismic evaluation and retrofit of concrete buildings [S]. Redwood City: Applied Technology Council, 1996.
[17] GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010. GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
[18] AIJ. Guidelines for performance evaluation of earthquake resistant reinforced concrete buildings (draft) [S]. Tokyo, Japan: Architectural Institute of Japan, 2004.
[19] DWAIRI H M, KOWALSKY M J, NAU J M. Equivalent damping in support of direct displacement-based design [J]. Journal of Earthquake Engineering, 2007, 11(4): 512 − 530. doi: 10.1080/13632460601033884
[20] CHAO S H, GOEL S C, LEE S S. A seismic design lateral force distribution based on inelastic state of structures [J]. Earthquake Spectra, 2007, 23(3): 547 − 569. doi: 10.1193/1.2753549
[21] FEMA P-695, Quantification of building seismic performance factors [S]. Washington: FEMA, 2009.