A PROBABILISTIC ASSESSMENT METHOD FOR POST-EARTHQUAKE FUNCTIONALITY OF CONTAINERIZED EDGE DATA CENTER
-
摘要:
集装箱式边缘数据中心是5G通信网络中的一类重要节点,准确评价其在不同强度地震作用下的功能水平是5G通信网络震后功能评价的基础。该文以一个典型集装箱式边缘数据中心为研究对象,提出了该类数据中心震后功能的概率评价方法。详细分析了典型数据中心5个子系统的基本部件构成和各基本部件间的功能逻辑关系,建立了子系统的故障树模型和数据中心的状态树模型;通过数值模拟和文献调研,给出了数据中心各基本部件的地震易损性参数;将状态树和蒙特卡洛模拟相结合,计算出了典型数据中心的地震功能易损性曲线和参数。研究表明:空调内机、蓄电池柜和空调外机是集装箱式边缘数据中心的薄弱环节,改善这些薄弱环节可显著提升集装箱式边缘数据中心震后功能水平。
-
关键词:
- 集装箱式边缘数据中心 /
- 震后功能概率评价 /
- 地震易损性 /
- 故障树 /
- 状态树
Abstract:The containerized edge data center (CEDC) is one of the critical components of the 5G communication network. Accurate assessment of its functionality level under earthquakes with various intensities is the foundation of post-earthquake functionality assessment of the communication network. Taking a typical CEDC as the research object, a probabilistic-based method is developed to evaluate its post-earthquake functionality. The critical components of five subsystems of the CEDC were recognized and the functional logic relationship between these components were analyzed. Then the fault tree model of each subsystem and the state tree model of CEDC were established. The seismic fragility parameters of each critical component were given based on previous literature or supplemental analyses. Seismic functional fragility curves and parameters of CEDC were calculated by combining the state trees with Monte Carlo simulation. The results indicate that the indoor and outdoor units of air conditioning, and battery cabinet are the most vulnerable parts of CEDC. Enhancement of these parts can significantly improve the post-earthquake functionality level of CEDC.
-
-
表 1 基本部件的易损性参数
Table 1 Fragility parameters of basic components
编号 名称 需求参数 损伤水平 概率抗震能力模型 概率地震需求模型 地震易损性模型 mC βC ln a b βD|IM mS/g βS 1 ATS[28] PGA/g 毁坏 2.4000 0.4000 − − − 2.4000 0.4000 2 UPS[28] PGA/g 毁坏 2.7000 0.6000 − − − 2.7000 0.6000 3 配电柜[28] PGA/g 毁坏 3.0500 0.4000 − − − 3.0500 0.4000 4 柴油发电机[28] PGA/g 毁坏 2.0000 0.2000 − − − 2.0000 0.2000 5 蓄电池柜[29] PGA/g 毁坏 0.8430 0.9590 − − − 0.8430 0.9590 6 管控柜[30] PGA/g 严重破坏 1.4380 0.5010 − − − 1.4380 0.5010 7 交换机机柜[14] PGA/g 严重破坏 1.2583 0.3072 − − − 1.2583 0.3072 8 读写服务器机柜[14] PGA/g 严重破坏 1.2583 0.3072 − − − 1.2583 0.3072 9 计算服务器机柜[14] PGA/g 严重破坏 1.2583 0.3072 − − − 1.2583 0.3072 10 空调外机[28] PFAJ/g 损毁 1.8400 0.6000 0.7791 0.9316 0.9491 0.8338 0.7067 11 空调内机[28] PFAT/g 损毁 1.5400 0.6000 1.5921 0.9820 0.3622 0.3079 0.7115 12 集装箱框架[32] θJ 严重破坏 0.0250 0.0000 6.2769 1.0178 0.2921 12.7139 0.2870 13 密闭冷通框架[32] θT 严重破坏 0.0250 0.0000 3.6860 0.7636 0.2317 0.9963 0.3034 注:PFAJ和PFAT分别为空调外机和空调内机安装位置的峰值楼面加速度;θJ和θT分别为集装箱框架和密闭冷通道框架顶部相对基底的位移角。 表 2 12条地震动记录
Table 2 12 ground motion records
编号 地震名称 年代 震级 记录台站 PGA/g 1 Northridge 1994 6.7 Beverly Hills - Mulhol 0.43 2 Northridge 1994 6.7 Canyon Country-WLC 0.40 3 Duzce, Turkey 1999 7.1 Bolu 0.72 4 Hector Mine 1999 7.1 Hector 0.26 5 Imperial Valley 1979 6.5 Delta 0.23 6 Imperial Valley 1979 6.5 El Centro Array #11 0.36 7 Kobe, Japan 1995 6.9 Nishi-Akashi 0.47 8 Kobe, Japan 1995 6.9 Shin-Osaka 0.22 9 Kocaeli, Turkey 1999 7.5 Duzce 0.31 10 Kocaeli, Turkey 1999 7.5 Arcelik 0.22 11 Landers 1992 7.3 Yermo Fire Station 0.24 12 Landers 1992 7.3 Coolwater 0.28 表 3 典型CEDC的地震功能易损性参数
Table 3 Parameters of the seismic functional fragility of the typical CEDC
易损性水平 市电完好 市电故障 中位值/g 对数标准差 中位值/g 对数标准差 F1 0.4657 0.3722 0.3966 0.4308 F2 0.4691 0.3885 0.3979 0.4416 F3 0.4694 0.3912 0.3979 0.4430 F4 0.4694 0.3916 0.3979 0.4431 F5 0.4694 0.3917 0.3979 0.4431 F6 0.4694 0.3917 0.3979 0.4431 -
[1] 纪伟. 5G中分布式云技术方案的应用[J]. 信息通信技术, 2020, 14(5): 57 − 62. doi: 10.3969/j.issn.1674-1285.2020.05.010 JI Wei. Application of distributed cloud technology solution in 5G [J]. Information and Communications Technologies, 2020, 14(5): 57 − 62. (in Chinese) doi: 10.3969/j.issn.1674-1285.2020.05.010
[2] 楚俊生, 张博山, 林兆骥. 边缘计算在物联网领域的应用及展望[J]. 信息通信技术, 2018, 12(5): 31 − 39. doi: 10.3969/j.issn.1674-1285.2018.05.005 CHU Junsheng, ZHANG Boshan, LIN Zhaoji. Application and expectation of edge computing in internet of things [J]. Information and Communications Technologies, 2018, 12(5): 31 − 39. (in Chinese) doi: 10.3969/j.issn.1674-1285.2018.05.005
[3] GB/T 38591−2020, 建筑抗震韧性评价标准 [S]. 北京: 中国标准出版社, 2020. GB/T 38591−2020, Standard for seismic resilience assessment of buildings [S]. Beijing: Standards Press of China, 2020. (in Chinese)
[4] 任军宇, 潘鹏, 王涛, 等. GB/T 38591−2020《建筑抗震韧性评价标准》解读[J]. 建筑结构学报, 2021, 42(1): 48 − 56. REN Junyu, PAN Peng, WANG Tao, et al. Interpretation of GB/T 38591−2020 ‘Standard for seismic resilience assessment of buildings’ [J]. Journal of Building Structures, 2021, 42(1): 48 − 56. (in Chinese)
[5] HAASL D F. Advanced concepts in fault tree analysis [C]// System Safety Symposium. Seattle America: The Boeing Company, 1965: 1 − 12.
[6] FUSSELL J B, POWERS G J, BENNETTS R G. Fault trees−a state of the art discussion [J]. IEEE Transactions on Reliability, 1974, R-23(1): 51 − 55. doi: 10.1109/TR.1974.5215704
[7] HAASL D F, ROBERTS N H, VESELY W E, et al. Fault tree handbook [R]. Washington DC: Nuclear Regulatory Commission, 1981.
[8] U. S. Nuclear Regulatory Commission. Reactor safety study: An assessment of accident risks in U. S. commercial nuclear power plants [M]. Washington: U. S. Nuclear Regulatory Commission, 1975.
[9] LEVINE S, VESELY W E. Important event-tree and fault-tree considerations in the reactor safety study [J]. IEEE Transactions on Reliability, 1976, R-25(3): 132 − 139. doi: 10.1109/TR.1976.5215020
[10] JOHNSON G S, SHEPPARD R E, QUILICI M D, et al. Seismic reliability assessment of critical facilities: A handbook, supporting documentation, and model code provisions [R]. Buffalo, NY: Multidisciplinary Center for Earthquake Engineering Research, 1999.
[11] HWANG H H M, CHOU T. Evaluation of seismic performance of an electric substation using event tree/fault tree technique [J]. Probabilistic Engineering Mechanics, 1998, 13(2): 117 − 124. doi: 10.1016/S0266-8920(97)00018-0
[12] 王晓琳. 医院功能性实用系统的抗震可靠性分析 [D]. 北京: 北京工业大学, 2005: 68 − 83. WANG Xiaolin. Seismic reliability analysis for functional utility system in hospital [D]. Beijing: Beijing University of Technology, 2005: 68 − 83. (in Chinese)
[13] PORTER K, RAMER K. Estimating earthquake-induced failure probability and downtime of critical facilities [J]. Journal of Business Continuity & Emergency Planning, 2012, 5(4): 352 − 364.
[14] 毛晨曦, 李诗尧, 张亮泉. 落地通信基站机房地震易损性及震后功能失效概率评估[J]. 世界地震工程, 2018, 34(2): 55 − 64. MAO Chenxi, LI Shiyao, ZHANG Liangquan. Seismic fragility and functional failure probability assessment of machine room of typical base transceiver stations that located on the ground [J]. World Earthquake Engineering, 2018, 34(2): 55 − 64. (in Chinese)
[15] LI J C, WANG T, SHANG Q X. Probability-based seismic reliability assessment method for substation systems [J]. Earthquake Engineering & Structural Dynamics, 2019, 48(3): 328 − 346.
[16] LI J C, WANG T, SHANG Q X. Probability-based seismic resilience assessment method for substation systems [J]. Structure and Infrastructure Engineering, 2022, 18(1): 71 − 83. doi: 10.1080/15732479.2020.1835998
[17] REED J W, KENNEDY R P, BUTTEMER D R, et al. A methodology for assessment of nuclear power plant seismic margin [R]. Palo Alto, CA, USA: Electric Power Research Institute, 1991.
[18] SHANG Q X, WANG T, LI J C. Seismic resilience assessment of emergency departments based on the state tree method [J]. Structural Safety, 2020, 85: 101944. doi: 10.1016/j.strusafe.2020.101944
[19] 尚庆学. 医疗系统抗震韧性评价方法研究 [D]. 哈尔滨: 中国地震局工程力学研究所, 2021. SHANG Qingxue. Research on seismic resilience assessment method of hospital systems [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2021. (in Chinese)
[20] 纪晓东, 徐梦超, 庄赟城, 等. 钢筋混凝土剪力墙和连梁易损性曲线研究[J]. 工程力学, 2020, 37(4): 205 − 216. doi: 10.6052/j.issn.1000-4750.2019.09.0549 JI Xiaodong, XU Mengchao, ZHUANG Yuncheng, et al. Fragility curves of reinforced concrete shear walls and coupling beams [J]. Engineering Mechanics, 2020, 37(4): 205 − 216. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0549
[21] 解琳琳, 闫海洋, 曾德民, 等. 隔震建筑橡胶柔性管道易损性模型研发及应用[J]. 工程力学, 2021, 38(5): 182 − 190. doi: 10.6052/j.issn.1000-4750.2020.06.0415 XIE Linlin, YAN Haiyang, ZENG Demin, et al. Development and application of fragility model for rubber flexible pipes used in base isolated buildings [J]. Engineering Mechanics, 2021, 38(5): 182 − 190. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0415
[22] 郑山锁, 杨松, 郑跃, 等. 吊顶系统抗震性能研究综述[J]. 工程力学, 2021, 38(9): 1 − 14. doi: 10.6052/j.issn.1000-4750.2020.09.0655 ZHENG Shansuo, YANG Song, ZHENG Yue, et al. Research review on seismic performance of suspended ceiling systems [J]. Engineering Mechanics, 2021, 38(9): 1 − 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0655
[23] 尚庆学, 韩镝, 孙国良, 等. 基于振动台试验的通信机柜地震易损性分析[J]. 哈尔滨工业大学学报, 2022, 54(5): 57 − 63. doi: 10.11918/202104057 SHANG Qingxue, HAN Di, SUN Guoliang, et al. Seismic fragility analysis of telecommunication cabinets based on shaking table tests [J]. Journal of Harbin Institute of Technology, 2022, 54(5): 57 − 63. (in Chinese) doi: 10.11918/202104057
[24] 于晓辉. 钢筋混凝土框架结构的概率地震易损性与风险分析 [D]. 哈尔滨: 哈尔滨工业大学, 2012. YU Xiaohui. Probabilistic seismic fragility and risk analysis of reinforced concrete frame structures [D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese)
[25] TAVARES D H, PADGETT J E, PAULTRE P. Fragility curves of typical as-built highway bridges in eastern Canada [J]. Engineering Structures, 2012, 40: 107 − 118. doi: 10.1016/j.engstruct.2012.02.019
[26] 吕大刚, 于晓辉. 基于地震易损性解析函数的概率地震风险理论研究[J]. 建筑结构学报, 2013, 34(10): 41 − 48. doi: 10.14006/j.jzjgxb.2013.10.005 LYU Dagang, YU Xiaohui. Theoretical study of probabilistic seismic risk assessment based on analytical functions of seismic fragility [J]. Journal of Building Structures, 2013, 34(10): 41 − 48. (in Chinese) doi: 10.14006/j.jzjgxb.2013.10.005
[27] CORNELL C A, JALAYER F, HAMBURGER R O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines [J]. Journal of Structural Engineering, 2002, 128(4): 526 − 533. doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)
[28] HAMBURGER R O. Seismic performance assessment of buildings [R]. Redwood City: Applied Technology Council (ATC), 2012.
[29] 毛晨曦, 冯利飞. 基于振动台试验的移动通信节点机房蓄电池组地震易损性分析[J]. 世界地震工程, 2019, 35(3): 10 − 20. MAO Chenxi, FENG Lifei. Seismic fragility analysis of storage batteries in mobile communication node room based on shaking table test [J]. World Earthquake Engineering, 2019, 35(3): 10 − 20. (in Chinese)
[30] 冯利飞. 基于振动台试验的关键通信设备地震易损性研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2019: 67 − 69. FENG Lifei. Seismic vulnerability of critical facilities in mobile communication system based on shaking table tests [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2019: 67 − 69. (in Chinese)
[31] ZUO H P, SHANG Q X, LI J C, et al. Function-oriented seismic performance assessment of complex systems [C]// Proceedings of the 8th International Symposium on Reliability Engineering and Risk Management. Hannover, Germany: Research Publishing, 2022: 821 − 825.
[32] FEMA. NEHRP guidelines for the seismic rehabilitation of buildings [R]. Washington, DC: Federal Emergency Management Agency, 1997.
[33] FEMA. Quantification of building seismic performance factors [R]. Washington, DC: Federal Emergency Management Agency, 2009.
[34] ASCE/SEI 7−10, Minimum design loads for buildings and other structures [S]. Reston, USA: American Society of Civil Engineers, 2013.