留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压弯剪扭实腹型钢混凝土柱抗震性能试验研究

陈宇良 吉云鹏 陈宗平

陈宇良, 吉云鹏, 陈宗平. 压弯剪扭实腹型钢混凝土柱抗震性能试验研究[J]. 工程力学, 2023, 40(11): 155-167. doi: 10.6052/j.issn.1000-4750.2022.01.0133
引用本文: 陈宇良, 吉云鹏, 陈宗平. 压弯剪扭实腹型钢混凝土柱抗震性能试验研究[J]. 工程力学, 2023, 40(11): 155-167. doi: 10.6052/j.issn.1000-4750.2022.01.0133
CHEN Yu-liang, JI Yun-peng, CHEN Zong-ping. EXPERIMENTAL STUDY ON SEISMIC PERFORMANCE OF STEEL-REINFORCED CONCRETE COLUMNS UNDER COMPRESSION-FLEXURE-SHEAR-TORSION COMBINED ACTIONS[J]. Engineering Mechanics, 2023, 40(11): 155-167. doi: 10.6052/j.issn.1000-4750.2022.01.0133
Citation: CHEN Yu-liang, JI Yun-peng, CHEN Zong-ping. EXPERIMENTAL STUDY ON SEISMIC PERFORMANCE OF STEEL-REINFORCED CONCRETE COLUMNS UNDER COMPRESSION-FLEXURE-SHEAR-TORSION COMBINED ACTIONS[J]. Engineering Mechanics, 2023, 40(11): 155-167. doi: 10.6052/j.issn.1000-4750.2022.01.0133

压弯剪扭实腹型钢混凝土柱抗震性能试验研究

doi: 10.6052/j.issn.1000-4750.2022.01.0133
基金项目: 国家自然科学基金项目(51908141);广西自然科学基金项目(2019GXNSFBA245030);中国博士后科学基金项目(2021M693854);广西科技大学博士基金项目(校科博18Z09);广西研究生教育创新计划项目(YCSW2021319)
详细信息
    作者简介:

    陈宇良(1987−),男,广西人,副教授,博士,硕导,主要从事钢-混凝土组合结构、再生混凝土结构等方面的研究(E-mail: ylchen@gxust.edu.cn)

    吉云鹏(1996−),男,山西人,硕士生,主要从事钢-混凝土组合结构的研究(E-mail: yp20190301005@163.com)

    通讯作者:

    陈宗平(1975−),男,广西人,教授,博士,博导,主要从事海洋及近海混凝土结构、钢-混凝土组合结构等方面的研究(E-mail: zpchen@gxu.edu.cn)

  • 中图分类号: TU398+.1

EXPERIMENTAL STUDY ON SEISMIC PERFORMANCE OF STEEL-REINFORCED CONCRETE COLUMNS UNDER COMPRESSION-FLEXURE-SHEAR-TORSION COMBINED ACTIONS

  • 摘要: 为研究型钢混凝土(SRC)柱在压弯剪扭复合受力状态下的抗震性能,以截面尺寸、型钢含钢率、纵筋配筋率、体积配箍率和栓钉位置为变化参数,完成了12根型钢混凝土柱和1根钢筋混凝土(RC)对比柱的压弯剪扭低周反复试验。观察了试件在复合受扭状态下的破坏形态,对比分析了各试件的滞回曲线、骨架曲线、刚度退化、耗能及延性性能。结果表明:在压弯剪扭受力状态下,所有试件均发生弯扭破坏;荷载-柱顶位移滞回曲线呈饱满的梭形,扭矩-扭转角曲线为捏拢的“S”形;增大截面尺寸和配筋率可有效提高SRC柱的抗扭和抗弯承载力;峰值荷载前,抗扭刚度的退化速率明显快于抗弯刚度的退化速率,增大型钢含钢率和配筋率可延缓SRC柱的刚度退化;SRC柱的抗弯耗能能力优于抗扭耗能能力,扭转延性大于弯曲延性;与方形截面相比,矩形截面具有更好的扭转变形能力;在工字钢翼缘上焊接栓钉可有效提高SRC柱的抗震性能;根据现行规范和试验数据,提出SRC柱构造设计的相关建议和扭转耗能退化的经验公式。
  • 图  1  试件尺寸 /mm

    Figure  1.  Dimensions of specimens

    图  2  加载装置

    注:1—反力墙;2—压梁;3—主动作动器;4—从动作动器;5—反力钢架;6—滑轨;7—液压千斤顶;8—复合球铰;9—试件。

    Figure  2.  Loading system

    图  3  加载原理图

    Figure  3.  Loading principle

    图  4  试件的破坏形态

    Figure  4.  Failure patterns of specimens

    图  5  扭矩-扭转角滞回曲线

    Figure  5.  Torque-torsion hysteresis curves

    图  6  荷载-柱顶位移滞回曲线

    Figure  6.  Load-displacement hysteretic curves

    图  7  骨架曲线

    Figure  7.  skeleton curves

    图  8  试验参数对刚度退化的影响

    Figure  8.  The influence of test parameters on stiffness degradation

    图  9  等效粘滞阻尼系数计算简图

    Figure  9.  Calculation model of equivalent viscous damping coefficient

    图  10  试验参数对等效粘滞阻尼系数的影响

    Figure  10.  Influence of test parameters on equivalent viscous damping coefficient

    图  11  等效粘滞阻尼系数的分配

    Figure  11.  Distribution of equivalent viscous damping coefficients

    图  12  试验参数对延性系数影响

    Figure  12.  The influence of test parameters on ductility

    表  1  试件设计参数

    Table  1.   Design parameters of specimens

    试件编号轴压比n扭弯比γb×h/mm工字钢纵筋箍筋含钢率ρss/(%)配筋率ρs/(%)配箍率ρv/(%)栓钉位置
    RC-10.30.21300×3008148@1001.370.84
    SRC-10.30.21300×300I168148@1002.901.370.84
    SRC-20.30.21250×250I148148@1003.441.971.06
    SRC-30.30.21300×250I168148@1003.481.640.95
    SRC-40.30.21300×300I148148@1002.391.370.84
    SRC-50.30.21300×300I188148@1003.421.370.84
    SRC-60.30.21300×300I168128@1002.901.000.84
    SRC-70.30.21300×300I168188@1002.902.260.84
    SRC-80.30.21300×300I168208@1002.902.790.84
    SRC-90.30.21300×300I168148@502.901.371.35
    SRC-100.30.21300×300I168148@1502.901.370.56
    SRC-110.30.21300×300I168148@1003.181.370.84翼缘
    SRC-120.30.21300×300I168148@1003.521.370.84翼缘和腹板
    下载: 导出CSV

    表  2  钢材力学性能测试结果

    Table  2.   Mechanical performance indices of steel

    钢材类型屈服强度fy
    /MPa
    极限强度fu
    /MPa
    弹性模量Es
    /(×105 MPa)
    I18273.89381.402.03
    I16318.04443.322.06
    I14326.59438.572.02
    8335.41490.202.03
    12435.50626.701.98
    14482.26641.681.96
    18443.30652.811.98
    20397.35592.171.98
    下载: 导出CSV

    表  3  试件的特征点参数

    Table  3.   character parameters of specimens

    试件编号屈服点峰值点破坏点延性
    Py/kNΔy/mmTy/(kN·m)θy/(°)Pu/kNΔu/mmTu/(kN·m)θu/(°)Pf/kNΔf/mmTf/(kN·m)θf/(°)μμθ
    RC-1 正向 130.8 9.1 34.7 0.11 161.8 13.1 41.9 0.17 137.6 16.0 35.6 0.31 1.76 2.82
    反向 116.4 9.4 30.3 0.17 156.7 13.1 36.3 0.27 133.2 18.3 30.9 0.35 1.95 2.06
    均值 123.6 9.3 32.5 0.14 159.3 13.1 39.1 0.22 135.4 17.2 33.3 0.33 1.85 2.36
    SRC-1 正向 151.2 8.5 33.7 0.12 176.6 17.5 40.7 0.26 150.1 23.3 34.6 0.42 2.74 3.50
    反向 175.7 9.3 39.0 0.17 206.2 18.4 43.5 0.48 175.3 29.5 37.0 0.51 3.17 3.00
    均值 163.5 8.9 36.3 0.15 191.4 18.0 42.1 0.37 162.7 26.4 35.8 0.47 2.96 3.25
    SRC-2 正向 93.7 8.5 14.2 0.09 109.8 13.1 16.6 0.26 93.3 22.1 14.1 0.35 2.60 3.89
    反向 135.8 8.9 23.2 0.20 158.4 12.2 28.4 0.39 142.6 25.5 24.2 0.40 2.86 2.00
    均值 114.8 8.7 18.7 0.15 134.1 12.6 22.5 0.33 118.0 23.8 19.1 0.38 2.73 2.95
    SRC-3 正向 145.0 7.5 26.2 0.08 171.7 13.0 29.4 0.17 146.0 22.1 26.8 0.52 2.95 6.50
    反向 149.6 9.5 24.6 0.11 181.0 17.4 28.3 0.26 153.8 24.2 24.9 0.52 2.55 4.73
    均值 147.3 8.5 25.4 0.10 176.4 15.2 28.8 0.22 149.9 23.2 25.8 0.52 2.75 5.62
    SRC-4 正向 161.8 6.9 33.1 0.09 196.1 13.1 38.1 0.16 166.7 22.6 32.4 0.44 3.28 4.89
    反向 162.7 7.3 33.2 0.10 186.7 17.4 38.0 0.17 158.7 24.4 32.3 0.35 3.34 3.50
    均值 162.3 7.1 33.1 0.10 191.4 15.2 38.0 0.17 162.7 23.5 32.3 0.40 3.31 4.20
    SRC-5 正向 137.6 7.7 32.3 0.09 166.4 13.1 35.9 0.34 141.4 27.5 30.5 0.47 3.58 5.22
    反向 168.1 10.8 34.9 0.14 202.1 21.9 39.2 0.34 182.5 29.7 33.3 0.47 2.75 3.36
    均值 152.9 9.3 33.6 0.12 184.3 17.5 37.5 0.34 162.0 28.6 31.9 0.47 3.17 4.29
    SRC-6 正向 154.4 7.4 27.9 0.10 185.1 13.1 33.9 0.26 157.4 21.2 28.8 0.52 2.86 5.20
    反向 170.3 8.1 31.3 0.08 206.2 13.0 33.8 0.30 175.3 21.4 28.7 0.33 2.64 4.13
    均值 162.4 7.8 29.6 0.09 195.7 13.1 33.8 0.28 166.4 21.3 28.8 0.43 2.75 4.67
    SRC-7 正向 167.2 9.3 23.2 0.10 206.2 18.0 27.9 0.26 175.6 27.7 23.7 0.30 2.98 3.00
    反向 184.3 10.4 24.6 0.07 220.9 17.8 27.4 0.11 190.6 27.9 23.3 0.28 2.69 4.00
    均值 175.8 9.9 23.9 0.09 213.6 17.9 27.6 0.19 183.1 27.8 23.5 0.29 2.84 3.50
    SRC-8 正向 199.1 8.3 38.5 0.15 233.3 17.3 48.0 0.28 198.3 29.2 40.8 0.44 3.51 2.93
    反向 177.9 8.4 30.0 0.10 212.3 17.3 31.4 0.13 180.4 24.3 26.7 0.42 2.89 4.20
    均值 188.5 8.4 34.2 0.13 222.8 17.3 39.7 0.21 189.4 26.7 33.8 0.43 3.20 3.57
    SRC-9 正向 140.1 7.1 25.1 0.09 168.5 13.0 30.2 0.17 143.2 24.4 25.7 0.40 3.44 4.44
    反向 171.2 9.9 27.4 0.09 211.7 25.6 30.7 0.17 180.0 32.9 26.2 0.69 3.33 7.67
    均值 155.7 8.5 26.2 0.09 190.1 19.3 30.5 0.17 161.6 28.7 25.9 0.55 3.39 6.06
    SRC-10 正向 138.3 8.6 33.4 0.08 164.8 17.2 37.4 0.26 140.1 22.7 31.8 0.46 2.64 5.75
    反向 171.9 8.9 30.9 0.11 207.2 17.0 33.2 0.25 176.1 22.7 28.2 0.37 2.55 3.36
    均值 155.1 8.8 32.2 0.10 186.0 17.1 35.3 0.26 158.1 22.7 30.0 0.42 2.60 4.56
    SRC-11 正向 170.0 7.30 36.5 0.09 197.5 17.0 41.8 0.18 167.5 28.1 35.5 0.49 3.85 5.44
    反向 160.8 7.90 35.0 0.13 186.7 14.4 39.9 0.34 158.3 23.1 33.9 0.59 2.92 4.54
    均值 165.4 7.60 35.8 0.11 192.1 15.7 40.9 0.26 162.9 25.6 34.7 0.54 3.39 4.99
    SRC-12 正向 147.5 7.70 27.6 0.15 178.3 13.0 33.6 0.35 151.7 23.1 28.6 0.57 3.00 3.80
    反向 173.3 9.10 34.0 0.12 207.5 17.1 37.9 0.26 175.8 29.2 32.3 0.61 3.21 5.08
    均值 160.4 8.40 30.8 0.14 192.9 15.1 35.8 0.31 163.8 26.1 30.5 0.59 3.10 4.44
    下载: 导出CSV

    表  4  试件的层间位移角

    Table  4.   The interlayer displacement angle of the specimens

    试件编号Δcr/HeΔy/HeΔu/HeΔf/He
    RC-11/8851/1301/921/70
    SRC-11/9231/1341/671/45
    SRC-21/8201/1181/811/43
    SRC-31/9231/1411/791/52
    SRC-41/6321/1691/791/51
    SRC-51/10431/1301/691/42
    SRC-61/14121/1551/921/56
    SRC-71/12001/1221/671/43
    SRC-81/9601/1441/691/45
    SRC-91/8571/1421/621/42
    SRC-101/7271/1371/701/53
    SRC-111/15001/1581/761/47
    SRC-121/10911/1431/801/46
    下载: 导出CSV
  • [1] 曹万林, 武海鹏, 周建龙. 钢-混凝土组合巨型框架柱抗震研究进展[J]. 哈尔滨工业大学学报, 2019, 51(12): 1 − 12. doi: 10.11918/j.issn.0367-6234.201906155

    CAO Wanglin, WU Haipeng, ZHOU Jianlong. Review on seismic technology progress of steel-concrete composite mega frame column [J]. Journal of Harbin Institute of Technology, 2019, 51(12): 1 − 12. (in Chinese) doi: 10.11918/j.issn.0367-6234.201906155
    [2] 刘祖强, 任甭优, 薛建阳, 等. 型钢混凝土异形柱框架地震损伤分析[J]. 工程力学, 2021, 38(1): 143 − 153. doi: 10.6052/j.issn.1000-4750.2020.02.0123

    LIU Zuqiang, REN Bengyou, XUE Jianyang, et al. Seismic damage analysis on steel reinforced concrete frames with special-shaped columns [J]. Engineering Mechanics, 2021, 38(1): 143 − 153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0123
    [3] 刘祖强, 陈炜灿, 毛冬旭, 等. 型钢混凝土异形柱框架空间受力性能分析[J]. 工程力学, 2021, 38(7): 120 − 132, 158. doi: 10.6052/j.issn.1000-4750.2020.07.0488

    LIU Zuqiang, CHEN Weichan, MAO Dongxu, et al. Spatial mechanical performance of steel reinforced concrete frames with special-shaped columns [J]. Engineering Mechanics, 2021, 38(7): 120 − 132, 158. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0488
    [4] YANG Y, XUE Y, YU Y, et al. Experimental study on seismic performance of partially precast steel reinforced concrete columns [J]. Engineering Structures, 2018, 175: 63 − 75. doi: 10.1016/j.engstruct.2018.08.027
    [5] ZHOU J, CHEN Z, ZHENG W, et al. Seismic behavior of steel reinforced concrete column with welded studs subjected to combined action of compression-bending-shear-torsion [J]. Engineering Structures, 2022, 252: 113727. doi: 10.1016/j.engstruct.2021.113727
    [6] 袁书强, 陈适才, 田岳, 等. 扭弯比对SRC柱抗震性能影响的试验研究与分析[J]. 工程力学, 2018, 35(3): 167 − 177. doi: 10.6052/j.issn.1000-4750.2016.11.0908

    YUAN Shuqiang, CHEN Shicai, TIAN Yue, et al. Experimental study and analysis of torsion-bending ratio effect on aseismic performance of SRC columns [J]. Engineering Mechanics, 2018, 35(3): 167 − 177. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.11.0908
    [7] YB 9082−2006, 钢骨混凝土结构技术规程 [S]. 北京: 冶金工业出版社, 2007.

    YB 9082−2006, Technical specification of steel-reinforced concrete structures [S]. Beijing: Metallurgical Industry Press, 2007. (in Chinese)
    [8] JGJ 138−2016, 组合结构设计规范 [S]. 北京: 中国建筑工业出版社, 2016.

    JGJ 138−2016, Code for design of composite structures [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [9] WANG Y, GUO Y, LIU J, et al. Experimental study on torsion behavior of concrete filled steel tube columns subjected to eccentric compression [J]. Journal of Constructional Steel Research, 2017, 129(FEB.): 119 − 128.
    [10] NIE X, WANG Y, LI S, et al. Coupled bending-shear-torsion bearing capacity of concrete filled steel tube short columns [J]. Thin-Walled Structures, 2018, 123: 305 − 316. doi: 10.1016/j.tws.2017.11.026
    [11] WANG Y, WANG Y, HOU C, et al. Combined compression-bending-torsion behaviour of CFST columns confined by CFRP for marine structures [J]. Composite Structures, 2020, 242: 112181. doi: 10.1016/j.compstruct.2020.112181
    [12] CHEN S, PENG W, YAN W. Experimental study on steel reinforced concrete columns subjected to combined bending–torsion cyclic loading [J]. The Structural Design of Tall and Special Buildings, 2018, 27(11): e1479.
    [13] ZHOU J, CHEN Z, CHEN Y, et al. Torsional behavior of steel reinforced concrete beam with welded studs: Experimental investigation [J]. Journal of Building Engineering, 2022(48): 103879.
    [14] CHEN Z, MO L, LI S, et al. Seismic behavior of steel reinforced concrete L-shaped columns under compression-bending-shear-torsion combined action [J]. Journal of Building Engineering, 2021, 42: 102498. doi: 10.1016/j.jobe.2021.102498
    [15] 陈宗平, 刘祥, 陈建佳. 型钢混凝土十字形柱复合受扭滞回性能试验研究[J]. 建筑结构学报, 2020, 41(6): 108 − 118.

    CHEN Zongping, LIU Xiang, CHEN Jianjia. Experimental study on hysteretic behavior of steel reinforced concrete cross-shaped column under combined action of compression-flexure-shear and torsion [J]. Journal of Building Structures, 2020, 41(6): 108 − 118. (in Chinese)
    [16] 靳绪耀, 邵永健, 杜亮, 等. 复合受扭型钢混凝土组合柱滞回性能试验研究[J]. 工业建筑, 2019, 49(7): 169 − 175.

    JIN Xuyao, SHAO Yongjian, DU Liang, et al. Experimental research on hysteretic behavior of steel reinforced concrete column under combined torsion [J]. Industrial Construction, 2019, 49(7): 169 − 175. (in Chinese)
    [17] 翁晓红, 邵永健, 劳裕华, 等. 复合受扭型钢混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2017, 38(11): 23 − 33.

    WEN Xiaohong, SHAO Yongjian, LAO Yuhua, et al. Experimental study on seismic behavior of steel reinforced concrete column under combined torsion [J]. Journal of Building Structures, 2017, 38(11): 23 − 33. (in Chinese)
    [18] 邵永健, 王妮, 陈宗平, 等. 配角钢骨架型钢混凝土梁的纯扭性能及强度计算方法研究[J]. 工程力学, 2013, 30(9): 103 − 110. doi: 10.6052/j.issn.1000-4750.2012.05.0311

    SHAO Yongjian, WANG Ni, CHEN Zongping, et al. Torsional behavior and strength calculation methods of angle steel reinforced concrete beams [J]. Engineering Mechanics, 2013, 30(9): 103 − 110. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.05.0311
    [19] 陈宇良. 复合受扭型钢混凝土柱受力性能及设计方法研究 [D]. 南宁: 广西大学, 2018.

    CHEN Yuliang. Mechanical properties and design methods of steel concrete columns under combined torsion [D]. Nanning: Guangxi University, 2018. (in Chinese)
    [20] CAO X, WU L, LI Z. Behaviour of steel-reinforced concrete columns under combined torsion based on ABAQUS FEA [J]. Engineering Structures, 2020, 209: 109980. doi: 10.1016/j.engstruct.2019.109980
    [21] IBRAHIM M S, GEBREYOUHANNES E, MUHDIN A, et al. Effect of concrete cover on the pure torsional behavior of reinforced concrete beams [J]. Engineering Structures, 2020, 216: 110790. doi: 10.1016/j.engstruct.2020.110790
    [22] GB 50011−2010, 建筑抗震设计规范 [S]. 北京: 中国建筑工业出版社, 2016.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  87
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-28
  • 修回日期:  2022-04-18
  • 网络出版日期:  2022-05-16
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回