留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竖向力-温度荷载-扭矩加载路径下单桩承载变形研究

江杰 陈秋怡 黄中正 陈朝棋 欧孝夺

江杰, 陈秋怡, 黄中正, 陈朝棋, 欧孝夺. 竖向力-温度荷载-扭矩加载路径下单桩承载变形研究[J]. 工程力学, 2023, 40(11): 130-139. doi: 10.6052/j.issn.1000-4750.2022.01.0125
引用本文: 江杰, 陈秋怡, 黄中正, 陈朝棋, 欧孝夺. 竖向力-温度荷载-扭矩加载路径下单桩承载变形研究[J]. 工程力学, 2023, 40(11): 130-139. doi: 10.6052/j.issn.1000-4750.2022.01.0125
JIANG Jie, CHEN Qiu-yi, HUANG Zhong-zheng, CHEN Chao-qi, OU Xiao-duo. RESEARCH ON BEARING DEFORMATION OF SINGLE PILE UNDER VERTICAL FORCE-THERMAL LOAD-TORQUE LOADING PATH[J]. Engineering Mechanics, 2023, 40(11): 130-139. doi: 10.6052/j.issn.1000-4750.2022.01.0125
Citation: JIANG Jie, CHEN Qiu-yi, HUANG Zhong-zheng, CHEN Chao-qi, OU Xiao-duo. RESEARCH ON BEARING DEFORMATION OF SINGLE PILE UNDER VERTICAL FORCE-THERMAL LOAD-TORQUE LOADING PATH[J]. Engineering Mechanics, 2023, 40(11): 130-139. doi: 10.6052/j.issn.1000-4750.2022.01.0125

竖向力-温度荷载-扭矩加载路径下单桩承载变形研究

doi: 10.6052/j.issn.1000-4750.2022.01.0125
基金项目: 国家自然科学基金项目(52068004);广西大学学科交叉科研项目(2022JCB012);广西重点研发计划项目(AB19245018)
详细信息
    作者简介:

    陈秋怡(1998−),女,广西人,硕士生,主要从事桩基工程理论研究(E-mail: chenqyqy@foxmail.com)

    黄中正(1996−),男,广西人,硕士生,主要从事桩基工程理论研究(E-mail: 1536215838@qq.com)

    陈朝棋(1997−),男,四川人,硕士生,主要从事桩基工程理论研究(E-mail: 1769794511@qq.com)

    欧孝夺(1970−),男(壮族),广西人,教授,博士,博导,主要从事特殊土的特性研究(E-mail: ouxiaoduo@163.com)

    通讯作者:

    江 杰(1979−),男,湖北人,研究员,博士,博导,主要从事桩基工程理论与应用研究(E-mail: jie_jiang001@126.com)

  • 中图分类号: TU473.1

RESEARCH ON BEARING DEFORMATION OF SINGLE PILE UNDER VERTICAL FORCE-THERMAL LOAD-TORQUE LOADING PATH

  • 摘要: 正常服役过程能量桩受复杂的力学行为,目前针对多向荷载作用下能量桩的承载变形特性研究相对较少。为探讨能量桩在竖向力、温度荷载和扭矩共同作用下的承载特性,依次施加桩顶竖向力、温度荷载和桩顶扭矩,通过考虑温度荷载对桩侧摩阻力及边界条件的影响,基于荷载传递法及边界元法构建了桩身位移控制方程,提出竖向力→温度荷载→扭矩加载路径下的能量桩承载变形特性的分析方法,通过与已有试验和ABAQUS有限元结果进行对比,均具有比较好的吻合度。研究表明,温度荷载会改变单桩的荷载传递特征,影响桩身轴力和桩侧摩阻力分布。竖向力→温度荷载→扭矩加载路径下,温度变化引起的附加荷载会导致单桩抗扭承载力降低。进一步的参数分析表明,增大竖向荷载会使桩侧极限环向摩阻力减小,导致能量桩单桩抗扭能力降低26.2%(75%PuPu为竖向极限荷载);随着长径比的增加,桩身承载力逐渐增大,可选取合适的长径比抵消温度荷载带来的影响;随着温度增量的增大,桩身变形量逐渐增大,其中桩身0.6L以上部分变形较大,因此作为能量桩使用的工程桩基需要对地基上部进行加固。
  • 图  1  能量桩桩-土界面模型

    Figure  1.  Pile-soil interface model of energy pile

    图  2  能量桩沿桩长离散示意图

    Figure  2.  Discrete diagram of energy pile along pile length

    图  3  桩周土体剪切作用

    Figure  3.  Shear action of soil around piles

    图  4  三维数值模型

    Figure  4.  3D numerical model

    图  5  温度荷载下桩身轴力分布

    Figure  5.  Axial force distribution of pile under thermal load

    图  6  温度荷载下桩侧摩阻力分布

    Figure  6.  Distribution of pile shaft resistance under thermal load

    图  7  竖向力→温度荷载加载路径桩身轴力分布曲线

    Figure  7.  Axial force distribution curve under vertical force → thermal loading path

    图  8  桩侧环向摩阻力分布

    Figure  8.  Distribution of circumferential friction resistance on pile side

    图  9  $T{{ - }}\theta$曲线对比

    Figure  9.  Comparison of $T{{ - }}\theta$ curves

    图  10  三种竖向力工况下$T{{ - }}\theta$曲线对比

    Figure  10.  Comparison of $T{{ - }}\theta$ curves under three vertical load conditions

    图  11  三种竖向力工况下桩身扭转角分布情况

    Figure  11.  Distribution of pile torque angle under three vertical load conditions

    图  12  不同长径比L/D对桩顶承载力包络线的影响

    Figure  12.  Effect of different ratio L/D on the envelopes of pile top bearing capacity

    图  13  不同温度增量下$T{\text{ - }}\theta $曲线对比

    Figure  13.  Comparison of $T{\text{ - }}\theta $ curves under different temperature increments

    图  14  不同温度增量下桩身扭转角分布情况

    Figure  14.  Distribution of torsion angle of pile under different temperature increments

    表  1  桩-土材料参数

    Table  1.   Pile and soil parameters

    参数砂土混凝土
    密度ρ/(kg/m3)15712640
    弹性模量E/MPa 1127.8×103
    泊松比ν0.20.25
    热膨胀系数α/(με/℃)102.2
    下载: 导出CSV
  • [1] GUO Y, ZHANG G Z, LIU S Y. Investigation on the thermal response of full-scale PHC energy pile and ground temperature in multi-layer strata [J]. Applied Thermal Engineering, 2018, 143: 836 − 848.
    [2] LORIA A F R, VADROT A, LALOUI L. Analysis of the vertical displacement of energy pile groups [J]. Geomechanics for Energy and the Environment, 2018, 16: 1 − 14. doi: 10.1016/j.gete.2018.04.001
    [3] 陆浩杰, 吴迪, 孔纲强, 等. 循环温度作用下饱和黏土中摩擦型桩变形特性研究[J]. 工程力学, 2020, 37(5): 156 − 165. doi: 10.6052/j.issn.1000-4750.2019.07.0353

    LU Haojie, WU Di, KONG Gangqiang, et al. Displacement characteristics of friction piles embedded in saturated clay subjected to thermal cycles [J]. Engineering Mechanics, 2020, 37(5): 156 − 165. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0353
    [4] LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763 − 781.
    [5] BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles [J]. Géotechnique, 2009, 59(3): 237 − 248.
    [6] 路宏伟, 蒋刚, 王昊, 等. 摩擦型能源桩荷载–温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39(2): 334 − 342.

    LU Hongwei, JIANG Gang, WANG Hao, et al. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334 − 342. (in Chinese)
    [7] 蒋刚, 李仁飞, 王昊, 等. 摩擦型能源桩热–力耦合全过程承载性能分析[J]. 岩石力学与工程学报, 2019, 38(12): 2525 − 2534.

    JIANG Gang, LI Renfei, WANG Hao, et al. Numerical analysis of the bearing capacity of floating energy piles during the full process of thermal-mechanical coupling [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2525 − 2534. (in Chinese)
    [8] 方鹏飞, 高翔, 娄扬, 等. 夏季工况下正常服役地热能源桩承载性能原位试验研究[J]. 岩石力学与工程学报, 2021, 40(5): 1032 − 1042.

    FANG Pengfei, GAO Xiang, LOU Yang, et al. Field test on the bearing behaviors of geothermal energy piles in natural service under the summer condition [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 1032 − 1042. (in Chinese)
    [9] 王成龙, 刘汉龙, 孔纲强, 等. 工作荷载下温度循环对桩基变形与应力的影响分析[J]. 岩土力学, 2016, 37(S1): 317 − 322. doi: 10.16285/j.rsm.2016.S1.042

    WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Influence of circular temperature on the strain and stress of energy piles under a working load [J]. Rock and Soil Mechanics, 2016, 37(S1): 317 − 322. (in Chinese) doi: 10.16285/j.rsm.2016.S1.042
    [10] KNELLWOLF C, PERON H, LALOUI L. Geotechnical analysis of heat exchanger piles [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10): 890 − 902. doi: 10.1061/(ASCE)GT.1943-5606.0000513
    [11] PASTEN C, SANTAMARINA J C. Thermally induced long-term displacement of thermoactive piles [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 70 − 75.
    [12] 徐新丽, 蒋刚, 路宏伟, 等. 能源桩热-力半耦合弹性理论分析方法[J]. 南京工业大学学报(自然科学版), 2019, 41(1): 121 − 128.

    XU Xinli, JIANG Gang, LU Hongwei, et al. Elasticity theory of energy pile under thermal-mechanical semi-coupling [J]. Journal of Nanjing University of Technology (Natural Science Edition), 2019, 41(1): 121 − 128. (in Chinese)
    [13] OUYANG Y, SOGA K, LEUNG Y F. Numerical back-analysis of energy pile test at Lambeth College, London [M]// Geo-frontiers Congress 2011: Advances in Geotechnical Engineering, 2011: 440 − 449.
    [14] 费康, 戴迪, 洪伟. 能量桩单桩工作特性简化分析方法[J]. 岩土力学, 2019, 40(1): 70 − 80, 90. doi: 10.16285/j.rsm.2017.2266

    FEI Kang, DAI Di, HONG Wei. A simplified method for working performance analysis of single energy piles [J]. Rock and Soil Mechanics, 2019, 40(1): 70 − 80, 90. (in Chinese) doi: 10.16285/j.rsm.2017.2266
    [15] FAIZAL M, BOUAZZA A, HABERFIELD C, et al. Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(10): 04018072. doi: 10.1061/(ASCE)GT.1943-5606.0001952
    [16] CAO W P, CHEN Y M, WOLFE W E. New load transfer hyperbolic model for pile-soil interface and negative skin friction on single piles embedded in soft soils [J]. International Journal of Geomechanics, 2014, 14(1): 92 − 100. doi: 10.1061/(ASCE)GM.1943-5622.0000289
    [17] FLEMING W, WELTMAN A J, RANDOLPH M F, et al. Piling engineering [M]. New York: CRC Press, 2008.
    [18] RANDOLPH M F, WROTH C P. An analysis of the vertical deformation of pile groups [J]. Géotechnique, 1979, 29(4): 423 − 439.
    [19] 江杰, 王顺苇, 欧孝夺, 等. 黏土地基中桩顶扭矩-竖向荷载加载路径下单桩承载特性分析[J]. 岩土力学, 2020, 41(11): 3573 − 3582.

    JIANG Jie, WANG Shunwei, OU Xiaoduo, et al. Analysis of the bearing characteristics of single pile under the T→V loading path in clay ground [J]. Rock and Soil Mechanics, 2020, 41(11): 3573 − 3582. (in Chinese)
    [20] 邹新军, 王亚雄, 徐洞斌. Gibson地基中V-T联合受荷桩承载力分析[J]. 工程力学, 2020, 41(11): 3573 − 3582. doi: 10.6052/j.issn.1000-4750.2014.01.0073

    ZOU Xinjun, WANG Yaxiong, XU Dongbin. Bearing capacity analysis of piles under V-T combined loading in Gibson subsoil [J]. Engineering Mechanics, 2020, 41(11): 3573 − 3582. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.01.0073
    [21] 江杰, 王顺苇, 欧孝夺, 等. 膨胀土地基中单桩受扭非线性分析[J]. 工程力学, 2020, 37(11): 219 − 227. doi: 10.6052/j.issn.1000-4750.2020.04.0243

    JIANG Jie, WANG Shunwei, OU Xiaoduo, et al. Nonlinear torsional analysis of a single pile in an expansive soil foundation [J]. Engineering Mechanics, 2020, 37(11): 219 − 227. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0243
    [22] POULOS H G. Torsional response of piles [J]. Journal of the Geotechnical Engineering Division, 1975, 101(10): 1019 − 1035. doi: 10.1061/AJGEB6.0000203
    [23] NG C W W, SHI C, GUNAWAN A, et al. Centrifuge modelling of heating effects on energy pile performance in saturated sand [J]. Canadian Geotechnical Journal, 2015, 52(8): 1045-1057.
    [24] 龚建清, 彭文哲. 倾斜荷载下能量桩受力变形特性三维有限元分析[J]. 岩土工程学报, 2021, 43(11): 2105 − 2111.

    GONG Jianqing, PENG Wenzhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105 − 2111. (in Chinese)
    [25] GB 50007−2011, 建筑地基基础设计规范 [S]. 北京: 中国建筑工业出版社, 2012.

    GB 50007−2011, Code foe design of building for foundation [S]. Beijing: China Construction Industry Publishing Houses, 2012. (in Chinese)
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  39
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-28
  • 修回日期:  2022-05-24
  • 网络出版日期:  2022-06-25
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回