RESEARCH ON BEARING DEFORMATION OF SINGLE PILE UNDER VERTICAL FORCE-THERMAL LOAD-TORQUE LOADING PATH
-
摘要: 正常服役过程能量桩受复杂的力学行为,目前针对多向荷载作用下能量桩的承载变形特性研究相对较少。为探讨能量桩在竖向力、温度荷载和扭矩共同作用下的承载特性,依次施加桩顶竖向力、温度荷载和桩顶扭矩,通过考虑温度荷载对桩侧摩阻力及边界条件的影响,基于荷载传递法及边界元法构建了桩身位移控制方程,提出竖向力→温度荷载→扭矩加载路径下的能量桩承载变形特性的分析方法,通过与已有试验和ABAQUS有限元结果进行对比,均具有比较好的吻合度。研究表明,温度荷载会改变单桩的荷载传递特征,影响桩身轴力和桩侧摩阻力分布。竖向力→温度荷载→扭矩加载路径下,温度变化引起的附加荷载会导致单桩抗扭承载力降低。进一步的参数分析表明,增大竖向荷载会使桩侧极限环向摩阻力减小,导致能量桩单桩抗扭能力降低26.2%(75%Pu,Pu为竖向极限荷载);随着长径比的增加,桩身承载力逐渐增大,可选取合适的长径比抵消温度荷载带来的影响;随着温度增量的增大,桩身变形量逐渐增大,其中桩身0.6L以上部分变形较大,因此作为能量桩使用的工程桩基需要对地基上部进行加固。Abstract: The energy pile exhibits complex mechanical behavior, and there is relatively little research on the bearing deformation characteristics of the energy pile under multi-direction loads. To investigate the bearing characteristics of energy piles under vertical load, thermal load, and torque, the thermal load and torque were applied after preloading the vertical load to the pile top. By considering the effect of thermal load on the shaft resistance and boundary conditions of the pile, the pile displacement control equation is derived based on the load transfer method and boundary element method, and the analysis method of the bearing deformation characteristics of energy pile under vertical force → thermal load → torque loading path is proposed. The proposed method is in good agreement with the existing experiments and ABAQUS finite element results. The results show that thermal loading changes the load transfer characteristics of the monopile and affects the axial force and lateral frictional resistance distribution of the pile. Under the vertical force → thermal load → torque loading path, the additional load caused by the temperature change leads to the reduction of the monopile torsional resistance. Further parametric analysis shows that increasing the vertical load decreases the ultimate circumferential frictional resistance on the pile side, resulting in a 26.2% reduction (75%Pu, where Pu is the ultimate load) in the torsional resistance of the energy pile monopile. With the increase in the length-diameter ratio, the bearing capacity gradually increases, and thus the effect of thermal load can be offset by selecting a suitable length-diameter ratio. With the increase of temperature increment, the deformation increases gradually, and the deformation of the upper 0.6L is more significant, so the engineering pile foundation used as an energy pile needs to be reinforced on the upper part.
-
Key words:
- multidirectional loads /
- energy pile /
- bearing characteristic /
- load transfer /
- theoretical analysis
-
表 1 桩-土材料参数
Table 1. Pile and soil parameters
参数 砂土 混凝土 密度ρ/(kg/m3) 1571 2640 弹性模量E/MPa 11 27.8×103 泊松比ν 0.2 0.25 热膨胀系数α/(με/℃) 10 2.2 -
[1] GUO Y, ZHANG G Z, LIU S Y. Investigation on the thermal response of full-scale PHC energy pile and ground temperature in multi-layer strata [J]. Applied Thermal Engineering, 2018, 143: 836 − 848. [2] LORIA A F R, VADROT A, LALOUI L. Analysis of the vertical displacement of energy pile groups [J]. Geomechanics for Energy and the Environment, 2018, 16: 1 − 14. doi: 10.1016/j.gete.2018.04.001 [3] 陆浩杰, 吴迪, 孔纲强, 等. 循环温度作用下饱和黏土中摩擦型桩变形特性研究[J]. 工程力学, 2020, 37(5): 156 − 165. doi: 10.6052/j.issn.1000-4750.2019.07.0353LU Haojie, WU Di, KONG Gangqiang, et al. Displacement characteristics of friction piles embedded in saturated clay subjected to thermal cycles [J]. Engineering Mechanics, 2020, 37(5): 156 − 165. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0353 [4] LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763 − 781. [5] BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles [J]. Géotechnique, 2009, 59(3): 237 − 248. [6] 路宏伟, 蒋刚, 王昊, 等. 摩擦型能源桩荷载–温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39(2): 334 − 342.LU Hongwei, JIANG Gang, WANG Hao, et al. In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 334 − 342. (in Chinese) [7] 蒋刚, 李仁飞, 王昊, 等. 摩擦型能源桩热–力耦合全过程承载性能分析[J]. 岩石力学与工程学报, 2019, 38(12): 2525 − 2534.JIANG Gang, LI Renfei, WANG Hao, et al. Numerical analysis of the bearing capacity of floating energy piles during the full process of thermal-mechanical coupling [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2525 − 2534. (in Chinese) [8] 方鹏飞, 高翔, 娄扬, 等. 夏季工况下正常服役地热能源桩承载性能原位试验研究[J]. 岩石力学与工程学报, 2021, 40(5): 1032 − 1042.FANG Pengfei, GAO Xiang, LOU Yang, et al. Field test on the bearing behaviors of geothermal energy piles in natural service under the summer condition [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 1032 − 1042. (in Chinese) [9] 王成龙, 刘汉龙, 孔纲强, 等. 工作荷载下温度循环对桩基变形与应力的影响分析[J]. 岩土力学, 2016, 37(S1): 317 − 322. doi: 10.16285/j.rsm.2016.S1.042WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Influence of circular temperature on the strain and stress of energy piles under a working load [J]. Rock and Soil Mechanics, 2016, 37(S1): 317 − 322. (in Chinese) doi: 10.16285/j.rsm.2016.S1.042 [10] KNELLWOLF C, PERON H, LALOUI L. Geotechnical analysis of heat exchanger piles [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10): 890 − 902. doi: 10.1061/(ASCE)GT.1943-5606.0000513 [11] PASTEN C, SANTAMARINA J C. Thermally induced long-term displacement of thermoactive piles [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 70 − 75. [12] 徐新丽, 蒋刚, 路宏伟, 等. 能源桩热-力半耦合弹性理论分析方法[J]. 南京工业大学学报(自然科学版), 2019, 41(1): 121 − 128.XU Xinli, JIANG Gang, LU Hongwei, et al. Elasticity theory of energy pile under thermal-mechanical semi-coupling [J]. Journal of Nanjing University of Technology (Natural Science Edition), 2019, 41(1): 121 − 128. (in Chinese) [13] OUYANG Y, SOGA K, LEUNG Y F. Numerical back-analysis of energy pile test at Lambeth College, London [M]// Geo-frontiers Congress 2011: Advances in Geotechnical Engineering, 2011: 440 − 449. [14] 费康, 戴迪, 洪伟. 能量桩单桩工作特性简化分析方法[J]. 岩土力学, 2019, 40(1): 70 − 80, 90. doi: 10.16285/j.rsm.2017.2266FEI Kang, DAI Di, HONG Wei. A simplified method for working performance analysis of single energy piles [J]. Rock and Soil Mechanics, 2019, 40(1): 70 − 80, 90. (in Chinese) doi: 10.16285/j.rsm.2017.2266 [15] FAIZAL M, BOUAZZA A, HABERFIELD C, et al. Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(10): 04018072. doi: 10.1061/(ASCE)GT.1943-5606.0001952 [16] CAO W P, CHEN Y M, WOLFE W E. New load transfer hyperbolic model for pile-soil interface and negative skin friction on single piles embedded in soft soils [J]. International Journal of Geomechanics, 2014, 14(1): 92 − 100. doi: 10.1061/(ASCE)GM.1943-5622.0000289 [17] FLEMING W, WELTMAN A J, RANDOLPH M F, et al. Piling engineering [M]. New York: CRC Press, 2008. [18] RANDOLPH M F, WROTH C P. An analysis of the vertical deformation of pile groups [J]. Géotechnique, 1979, 29(4): 423 − 439. [19] 江杰, 王顺苇, 欧孝夺, 等. 黏土地基中桩顶扭矩-竖向荷载加载路径下单桩承载特性分析[J]. 岩土力学, 2020, 41(11): 3573 − 3582.JIANG Jie, WANG Shunwei, OU Xiaoduo, et al. Analysis of the bearing characteristics of single pile under the T→V loading path in clay ground [J]. Rock and Soil Mechanics, 2020, 41(11): 3573 − 3582. (in Chinese) [20] 邹新军, 王亚雄, 徐洞斌. Gibson地基中V-T联合受荷桩承载力分析[J]. 工程力学, 2020, 41(11): 3573 − 3582. doi: 10.6052/j.issn.1000-4750.2014.01.0073ZOU Xinjun, WANG Yaxiong, XU Dongbin. Bearing capacity analysis of piles under V-T combined loading in Gibson subsoil [J]. Engineering Mechanics, 2020, 41(11): 3573 − 3582. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.01.0073 [21] 江杰, 王顺苇, 欧孝夺, 等. 膨胀土地基中单桩受扭非线性分析[J]. 工程力学, 2020, 37(11): 219 − 227. doi: 10.6052/j.issn.1000-4750.2020.04.0243JIANG Jie, WANG Shunwei, OU Xiaoduo, et al. Nonlinear torsional analysis of a single pile in an expansive soil foundation [J]. Engineering Mechanics, 2020, 37(11): 219 − 227. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0243 [22] POULOS H G. Torsional response of piles [J]. Journal of the Geotechnical Engineering Division, 1975, 101(10): 1019 − 1035. doi: 10.1061/AJGEB6.0000203 [23] NG C W W, SHI C, GUNAWAN A, et al. Centrifuge modelling of heating effects on energy pile performance in saturated sand [J]. Canadian Geotechnical Journal, 2015, 52(8): 1045-1057. [24] 龚建清, 彭文哲. 倾斜荷载下能量桩受力变形特性三维有限元分析[J]. 岩土工程学报, 2021, 43(11): 2105 − 2111.GONG Jianqing, PENG Wenzhe. Three-dimensional finite element analysis of stress and deformation characteristics of energy piles under inclined loads [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2105 − 2111. (in Chinese) [25] GB 50007−2011, 建筑地基基础设计规范 [S]. 北京: 中国建筑工业出版社, 2012.GB 50007−2011, Code foe design of building for foundation [S]. Beijing: China Construction Industry Publishing Houses, 2012. (in Chinese) -