留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BTRC加固砖墙平面内抗剪力学性能及其增强机理研究

杨佩剑 田稳苓 卿龙邦 李鑫波

杨佩剑, 田稳苓, 卿龙邦, 李鑫波. BTRC加固砖墙平面内抗剪力学性能及其增强机理研究[J]. 工程力学, 2023, 40(11): 110-119. doi: 10.6052/j.issn.1000-4750.2022.01.0114
引用本文: 杨佩剑, 田稳苓, 卿龙邦, 李鑫波. BTRC加固砖墙平面内抗剪力学性能及其增强机理研究[J]. 工程力学, 2023, 40(11): 110-119. doi: 10.6052/j.issn.1000-4750.2022.01.0114
YANG Pei-jian, TIAN Wen-ling, QING Long-bang, LI Xin-bo. STUDY ON IN-PLANE SHEAR MECHANICAL PROPERTIES AND REINFORCEMENT MECHANISM OF BRICK WALL REINFORCED WITH BTRC[J]. Engineering Mechanics, 2023, 40(11): 110-119. doi: 10.6052/j.issn.1000-4750.2022.01.0114
Citation: YANG Pei-jian, TIAN Wen-ling, QING Long-bang, LI Xin-bo. STUDY ON IN-PLANE SHEAR MECHANICAL PROPERTIES AND REINFORCEMENT MECHANISM OF BRICK WALL REINFORCED WITH BTRC[J]. Engineering Mechanics, 2023, 40(11): 110-119. doi: 10.6052/j.issn.1000-4750.2022.01.0114

BTRC加固砖墙平面内抗剪力学性能及其增强机理研究

doi: 10.6052/j.issn.1000-4750.2022.01.0114
基金项目: 国家自然科学基金项目(52022027);河北省高层次人才资助项目(A202101011)
详细信息
    作者简介:

    杨佩剑(1990−),男,河北涉县人,博士生,主要从事TRC加固砌体结构研究(E-mail: 13132276339@163.com)

    田稳苓(1961−),女,河北大城人,教授,博士,博导,主要从事新型材料、新型结构和结构加固研究(E-mail: wltian126@126.com)

    李鑫波(1995−),男,四川成都人,博士生,主要从事TRC加固砌体结构研究(E-mail: xinboli727@163.com)

    通讯作者:

    卿龙邦(1982−),男,湖北天门人,教授,博士,博导,主要从事混凝土断裂与损伤力学研究(E-mail: qing@hebut.edu.cn)

  • 中图分类号: TU364

STUDY ON IN-PLANE SHEAR MECHANICAL PROPERTIES AND REINFORCEMENT MECHANISM OF BRICK WALL REINFORCED WITH BTRC

  • 摘要: 为研究玄武岩纤维编织网增强混凝土(BTRC, basalt textile reinforced concrete)加固砖墙的抗剪性能及其增强机理,对BTRC加固砖墙进行了对角剪切试验研究,考察了单双侧加固、纤维编织网层数以及砌筑砂浆强度对抗剪性能提升效果的影响。试验结果表明:BTRC与砖墙协同工作良好,墙体的抗剪强度、刚度及变形能力显著提高;相同纤维编织网层数下,双侧加固优于单侧;随着纤维编织网层数的增加,双侧加固效果逐渐提升,而单侧加固效果无明显变化;对于低强度砂浆砌筑的墙体,BTRC亦可将墙体的灰缝滑移破坏模式转变为具有多缝开裂特征的对角拉伸破坏,加固效果显著。结合试验结果分析了BTRC加固砖墙受剪破坏过程的受力特征,提出了约束增强机理。基于试验结果和增强机理对BTRC加固砖墙的抗剪承载力计算方法进行了研究。
  • 图  1  玄武岩纤维编织网

    Figure  1.  Basalt textile

    图  2  对角剪切试验装置

    Figure  2.  Test apparatus for diagonal shear

    图  3  A类砂浆砌筑墙体破坏形态

    Figure  3.  Failure mode of masonry wall with A mortar

    图  4  B类砂浆砌筑墙体破坏形态

    Figure  4.  Failure mode of masonry wall with B mortar

    图  5  剪应力-应变曲线

    Figure  5.  Shear stress-strain curve

    图  6  有效刚度平均值

    Figure  6.  Average value of effective stiffness modulus

    图  7  等效双线性模型

    Figure  7.  Equivalent bilinear model

    图  8  BTRC加固砌体对角剪切破坏特征

    Figure  8.  Diagonal shear failure characteristics of masonry reinforced with BTRC

    表  1  砖块和砌筑砂浆抗压强度

    Table  1.   Compressive strength of brick and masonry mortar

    材料抗压强度/MPa变异系数/(%)
    烧结砖6.8823.1
    A类砂浆10.9113.0
    B类砂浆5.8710.6
    下载: 导出CSV

    表  2  玄武岩纤维编织网力学性能

    Table  2.   Mechanical properties of basalt textile

    纤维方向抗拉强度/
    MPa
    弹性模量/
    GPa
    极限应变/
    (%)
    纤维束理论
    面积/mm2
    纬向1641.7675.312.180.188
    经向1243.9955.782.230.188
    注:纤维束的理论截面面积(Af)公式为:Af=Tex/Df,其中,Tex为纤维束线密度,由厂家提供,528 g/1000 m;Df为纤维束的密度,由厂家提供,2.8 g/cm3
    下载: 导出CSV

    表  3  BTRC基体配合比

    Table  3.   BTRC matrix mix proportion

    材料P.O
    42.5
    粉煤灰硅灰细砂粗砂减水剂
    含量/(kg·m−3)472168354609204.4262
    下载: 导出CSV

    表  4  试件参数

    Table  4.   Parameters of specimen

    试件组砂浆类型加固形式纤维编织网层数
    UAA类未加固
    TA1A类单侧加固1
    TA2A类单侧加固2
    TA3A类双侧加固1
    TA4A类双侧加固2
    UBB类未加固
    TBB类双侧加固1
    下载: 导出CSV

    表  5  试验结果

    Table  5.   Results of tests

    试件组试件编号开裂荷载/
    kN
    开裂应变/
    (%)
    峰值荷载/
    kN
    峰值荷载
    对应应变/(%)
    抗剪强度/
    MPa
    抗剪强度
    平均值/MPa
    抗剪强度
    提高率/(%)
    屈服应变/
    (%)
    极限应变/
    (%)
    延性系数
    UAUA-1132.050.790.83对比组1.00
    UA-2144.180.871.00
    TA1TA1-1140.930.049201.330.1421.211.25 50.640.0690.2173.14
    TA1-2150.340.046214.770.1581.290.0680.2894.24
    TA2TA2-1145.540.050207.920.1821.251.30 56.670.0770.2693.49
    TA2-2157.390.057224.840.1721.350.0730.3735.11
    TA3TA3-1186.870.047266.960.2011.601.57 89.060.0640.4446.93
    TA3-2178.700.051255.280.1911.530.0700.456.47
    TA4TA4-1214.660.061306.650.1731.841.87124.710.0710.8511.97
    TA4-2219.860.049314.080.3761.890.0650.8813.48
    UBUB-1115.660.700.65对比组1.00
    UB-299.890.601.00
    TBTB-1151.050.039215.780.1431.301.2492.010.0550.2855.22
    TB-2138.660.042198.090.1481.190.0610.4216.91
    下载: 导出CSV

    表  6  试验值和计算值对比

    Table  6.   Comparison between calculated value and test value

    试件组砌体贡献值
    Vm/kN
    加固层贡献值
    Vf/kN
    计算值
    (Vm+Vf )/kN
    试验值/kN
    TA316.111.127.2261.1
    TA416.122.138.2310.4
    TB12.711.123.8206.9
    下载: 导出CSV

    表  7  初步优化后计算值

    Table  7.   Calculated value after preliminary optimization

    试件组初步优化后
    砌体贡献值
    $V_{\rm{m}}' $/kN
    初步优化后
    加固层贡献值
    $ {V'_{\text{f} } } $/kN
    初步优化后
    计算值
    ($ V'_{\rm{m} }+{V'_{\text{f} } } $)/kN
    试验值/kN
    TA380.960.5141.4261.1
    TA480.9120.4201.3310.4
    TB71.460.5131.9206.9
    下载: 导出CSV

    表  8  优化后计算值与试验值对比

    Table  8.   Comparison between calculated value and test value after optimization

    试件组优化后计算值/kN试验值/kN优化后计算值/试验值
    TA3258.7261.10.991
    TA4307.1310.40.989
    TB196.9206.90.952
    下载: 导出CSV
  • [1] GARCIA-RAMONDA L, PELÀ L, ROCA P, et al. Experimental cyclic behaviour of shear masonry walls reinforced with single and double layered steel reinforced grout [J]. Construction and Building Materials, 2022, 320: 126053. doi: 10.1016/j.conbuildmat.2021.126053
    [2] ZHANG Y Q, LIN X C, WANG T, et al. Seismic behavior of masonry walls strengthened by precast reinforced concrete panels with different connection details [J]. Engineering Structures, 2021, 242: 112597. doi: 10.1016/j.engstruct.2021.112597
    [3] 王啸霆, 陈曦, 王涛, 等. 外套整体式加固砌体结构抗震性能试验研究[J]. 工程力学, 2022, 39(2): 123 − 135. doi: 10.6052/j.issn.1000-4750.2020.12.0931

    WANG Xiaoting, CHEN Xi, WANG Tao, et al. Experimental study of a masonry building retrofitted integrally by pre-fabricated RC panels [J]. Engineering Mechanics, 2022, 39(2): 123 − 135. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0931
    [4] 邓明科, 马向琨, 张伟, 等. 高延性混凝土加固蒸压加气混凝土砌体墙抗震性能试验研究[J]. 工程力学, 2021, 38(7): 9 − 18. doi: 10.6052/j.issn.1000-4750.2020.06.0336

    DENG Mingke, MA Xiangkun, ZHANG Wei, et al. Experimental studies on aseismic behavior of autoclaved aerated concrete masonry walls strengthened with HDC [J]. Engineering Mechanics, 2021, 38(7): 9 − 18. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0336
    [5] 万军. 碳纤维布加固砌体填充墙抗近距离小当量炸药爆炸数值模拟研究[J]. 工程力学, 2020, 37(增刊 1): 82 − 90. doi: 10.6052/j.issn.1000-4750.2019.04.S012

    WAN Jun. Numerical simulation of CFRP reinforced concrete masonry wall against small stand-off distance explosive charge [J]. Engineering Mechanics, 2020, 37(Suppl 1): 82 − 90. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S012
    [6] 杜运兴, 张蒙蒙, 周芬. 玄武岩纤维TRC板拉伸性能试验研究[J]. 湖南大学学报(自然科学版), 2018, 45(1): 61 − 67. doi: 10.16339/j.cnki.hdxbzkb.2018.01.008

    DU Yunxing, ZHANG Mengmeng, ZHOU Fen. Experimental study on tensile performance of basalt TRC plate [J]. Journal of Hunan University (Natural Sciences), 2018, 45(1): 61 − 67. (in Chinese) doi: 10.16339/j.cnki.hdxbzkb.2018.01.008
    [7] 李祯, 李晔. 玄武岩编织网复合ECC增强钢筋混凝土圆柱体轴向受压性能研究[J]. 建筑结构, 2017, 47(9): 40 − 44. doi: 10.19701/j.jzjg.2017.09.009

    LI Zhen, LI Ye. Axial compression performance study on basalt braided mesh composite ECC reinforced concrete cylinder [J]. Building Structure, 2017, 47(9): 40 − 44. (in Chinese) doi: 10.19701/j.jzjg.2017.09.009
    [8] 艾珊霞, 尹世平, 徐世烺. 纤维编织网增强混凝土的研究进展及应用[J]. 土木工程学报, 2015, 48(1): 27 − 40. doi: 10.15951/j.tmgcxb.2015.01.004

    AI Shanxia, YIN Shiping, XU Shilang. A review on the development of research and application of textile reinforced concrete [J]. China Civil Engineering Journal, 2015, 48(1): 27 − 40. (in Chinese) doi: 10.15951/j.tmgcxb.2015.01.004
    [9] KALALI A, KABIR M Z. Experimental response of double-wythe masonry panels strengthened with glass fiber reinforced polymers subjected to diagonal compression tests [J]. Engineering Structures, 2012, 39: 24 − 37. doi: 10.1016/j.engstruct.2012.01.018
    [10] MEZREA P E, YILMAZ I A, ISPIR M, et al. External jacketing of unreinforced historical masonry piers with open-grid basalt-reinforced mortar [J]. Journal of Composites for Construction, 2017, 21(3): 04016110. doi: 10.1061/(ASCE)CC.1943-5614.0000770
    [11] FOSSETTI M, MINAFÒ G. Comparative experimental analysis on the compressive behaviour of masonry columns strengthened by FRP, BFRCM or steel wires [J]. Composites Part B: Engineering, 2017, 112: 112 − 124. doi: 10.1016/j.compositesb.2016.12.048
    [12] KARIOU F A, TRIANTAFYLLOU S P, BOURNAS D A, et al. Out-of-plane response of masonry walls strengthened using textile-mortar system [J]. Construction and Building Materials, 2018, 165: 769 − 781. doi: 10.1016/j.conbuildmat.2018.01.026
    [13] MARCARI G, BASILI M, VESTRONI F. Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar [J]. Composites Part B: Engineering, 2017, 108: 131 − 142. doi: 10.1016/j.compositesb.2016.09.094
    [14] 尹世平, 成帅安, 荆磊. FRP和TRC加固砌体墙受剪性能试验研究[J]. 建筑结构学报, 2020, 41(增刊 1): 315 − 322. doi: 10.14006/j.jzjgxb.2020.S1.035

    YIN Shiping, CHENG Shuaian, JING Lei. Experimental research on shear performance of masonry wall strengthened with FRP and TRC [J]. Journal of Building Structures, 2020, 41(Suppl 1): 315 − 322. (in Chinese) doi: 10.14006/j.jzjgxb.2020.S1.035
    [15] ASTM E519/E519M-15, Standard test method for diagonal tension (shear) in masonry assemblages [S]. West Conshohocken: ASTM, 2015.
    [16] 黄奕辉, 陈华艳, 罗才松. 玻璃纤维布包裹加固砖柱轴压试验研究与极限承载力分析[J]. 建筑结构学报, 2009, 30(2): 136 − 142. doi: 10.3321/j.issn:1000-6869.2009.02.017

    HUANG Yihui, CHEN Huayan, LUO Caisong. Experiment study and analysis of ultimate capacity on brick masonry columns wrapped with glass fiber reinforced plastic sheet under axial compression [J]. Journal of Building Structures, 2009, 30(2): 136 − 142. (in Chinese) doi: 10.3321/j.issn:1000-6869.2009.02.017
    [17] KADAM S B, SINGH Y, LI B. Strengthening of unreinforced masonry using welded wire mesh and micro-concrete-Behaviour under in-plane action [J]. Construction and Building Materials, 2014, 54: 247 − 257. doi: 10.1016/j.conbuildmat.2013.12.033
    [18] MARCARI G, MANFREDI G, PROTA A, et al. In-plane shear performance of masonry panels strengthened with FRP [J]. Composites Part B: Engineering, 2007, 38(7/8): 887 − 901.
    [19] 刘立新. 砌体结构[M]. 4版. 武汉: 武汉理工大学出版社, 2012: 13.

    LIU Lixin. Masonry structure [M]. 4th ed. Wuhan: Wuhan University of Technology Press, 2012: 13. (in Chinese)
    [20] 尹双增. 断裂、损伤理论及应用[M]. 北京: 清华大学出版社, 1992.

    YIN Shuangzeng. Fracture and damage theories and their application [M]. Beijing: Tsinghua University Press, 1992. (in Chinese)
    [21] 北京钢铁研究院金属物理室. 工程断裂力学-上册[M]. 北京: 国防工业出版社, 1977.

    Laboratory of Metal Physics of Beijing Iron and Steel Research Institute. Engineering fracture mechanics [M]. Beijing: National Defense Industry Press, 1977. (in Chinese)
    [22] 蔡四维, 蔡敏. 混凝土的损伤断裂[M]. 北京: 人民交通出版社, 1999.

    CAI Siwei, CAI Min. Damage and fracture of concrete [M]. Beijing: China Communications Press, 1999. (in Chinese)
    [23] ACI 549.4R-13, Guide to design and construction of externally bonded fabric-reinforced cementitious matrix (FRCM) systems for repair and strengthening concrete and masonry structures [S]. Farmington Hills: ACI, 2013.
    [24] LI T, GALATI N, TUMIALAN J G, et al. Analysis of unreinforced masonry concrete walls strengthened with glass fiber-reinforced polymer bars [J]. ACI Structural Journal, 2005, 102(4): 569 − 577.
    [25] SILVA P F, YU P Y, NANNI A. Monte Carlo simulation of shear capacity of URM walls retrofitted by polyurea reinforced GFRP grids [J]. Journal of Composites for Construction, 2008, 12(4): 405 − 415. doi: 10.1061/(ASCE)1090-0268(2008)12:4(405)
    [26] PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings [M]. New York: Wiley, 1992.
    [27] BABAEIDARABAD S, ARBOLEDA D, LORETO G, et al. Shear strengthening of un-reinforced concrete masonry walls with fabric-reinforced-cementitious-matrix [J]. Construction and Building Materials, 2014, 65: 243 − 253. doi: 10.1016/j.conbuildmat.2014.04.116
    [28] BABAEIDARABAD S, DE CASO F, NANNI A. URM walls strengthened with fabric-reinforced cementitious matrix composite subjected to diagonal compression [J]. Journal of Composites for Construction, 2014, 18(2): 04013045. doi: 10.1061/(ASCE)CC.1943-5614.0000441
    [29] MENNA C, BALSAMO A, MADDALONI G, et al. Comparative assessment of the tensile behavior of steel and textile reinforced mortar systems [C]. Symposium Paper, 2018, 324(2): 17 − 34.
    [30] ISMAIL N, EL-MAADDAWY T, KHATTAK N, et al. In-plane shear strength improvement of hollow concrete masonry panels using a fabric-reinforced cementitious matrix [J]. Journal of Composites for Construction, 2018, 22(2): 04018004. doi: 10.1061/(ASCE)CC.1943-5614.0000835
    [31] DEL ZOPPO M, DI LUDOVICO M, BALSAMO A, et al. Experimental in-plane shear capacity of clay brick masonry panels strengthened with FRCM and FRM composites [J]. Journal of Composites for Construction, 2019, 23(5): 04019038. doi: 10.1061/(ASCE)CC.1943-5614.0000965
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  47
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-23
  • 修回日期:  2022-07-08
  • 网络出版日期:  2022-11-01
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回