STUDY ON IN-PLANE SHEAR MECHANICAL PROPERTIES AND REINFORCEMENT MECHANISM OF BRICK WALL REINFORCED WITH BTRC
-
摘要: 为研究玄武岩纤维编织网增强混凝土(BTRC, basalt textile reinforced concrete)加固砖墙的抗剪性能及其增强机理,对BTRC加固砖墙进行了对角剪切试验研究,考察了单双侧加固、纤维编织网层数以及砌筑砂浆强度对抗剪性能提升效果的影响。试验结果表明:BTRC与砖墙协同工作良好,墙体的抗剪强度、刚度及变形能力显著提高;相同纤维编织网层数下,双侧加固优于单侧;随着纤维编织网层数的增加,双侧加固效果逐渐提升,而单侧加固效果无明显变化;对于低强度砂浆砌筑的墙体,BTRC亦可将墙体的灰缝滑移破坏模式转变为具有多缝开裂特征的对角拉伸破坏,加固效果显著。结合试验结果分析了BTRC加固砖墙受剪破坏过程的受力特征,提出了约束增强机理。基于试验结果和增强机理对BTRC加固砖墙的抗剪承载力计算方法进行了研究。
-
关键词:
- 玄武岩纤维编织网增强混凝土 /
- 加固 /
- 砖墙 /
- 抗剪性能 /
- 增强机理
Abstract: In order to study the shear behavior and reinforcement mechanism of brick wall reinforced with basalt textile reinforced concrete (BTRC), the diagonal shear tests have been carried out on BTRC reinforced walls, and the effects of single-side vs. double-side reinforcement, the number of textile layers and the strength of masonry mortar on the improvement of shear resistance have been investigated. The test results show that the BTRC and brick wall work well together, and the shear strength, stiffness and deformation capacity of brick wall are significantly improved; under the same number of textile layers, double-side reinforcement has better effect than single-side reinforcement; with the increase of the number of textile layers, the reinforcement effect of double-side is gradually improved, while the reinforcement effect of single-side changes little; for brick walls built with low strength mortar, the BTRC also transforms the failure mode of slip cracking of mortar joint into diagonal tensile failure with multi-joint cracking characteristics, and the reinforcement effect is remarkable. The mechanical characteristics of BTRC reinforced brick wall were analyzed, and the restraint reinforcement mechanism was put forward. Based on the test results and the reinforcement mechanism, the calculation method of shear capacity of brick wall reinforced with BTRC was studied. -
表 1 砖块和砌筑砂浆抗压强度
Table 1. Compressive strength of brick and masonry mortar
材料 抗压强度/MPa 变异系数/(%) 烧结砖 6.88 23.1 A类砂浆 10.91 13.0 B类砂浆 5.87 10.6 表 2 玄武岩纤维编织网力学性能
Table 2. Mechanical properties of basalt textile
纤维方向 抗拉强度/
MPa弹性模量/
GPa极限应变/
(%)纤维束理论
面积/mm2纬向 1641.76 75.31 2.18 0.188 经向 1243.99 55.78 2.23 0.188 注:纤维束的理论截面面积(Af)公式为:Af=Tex/Df,其中,Tex为纤维束线密度,由厂家提供,528 g/1000 m;Df为纤维束的密度,由厂家提供,2.8 g/cm3。 表 3 BTRC基体配合比
Table 3. BTRC matrix mix proportion
材料 P.O
42.5粉煤灰 硅灰 细砂 粗砂 减水剂 水 含量/(kg·m−3) 472 168 35 460 920 4.4 262 表 4 试件参数
Table 4. Parameters of specimen
试件组 砂浆类型 加固形式 纤维编织网层数 UA A类 未加固 — TA1 A类 单侧加固 1 TA2 A类 单侧加固 2 TA3 A类 双侧加固 1 TA4 A类 双侧加固 2 UB B类 未加固 — TB B类 双侧加固 1 表 5 试验结果
Table 5. Results of tests
试件组 试件编号 开裂荷载/
kN开裂应变/
(%)峰值荷载/
kN峰值荷载
对应应变/(%)抗剪强度/
MPa抗剪强度
平均值/MPa抗剪强度
提高率/(%)屈服应变/
(%)极限应变/
(%)延性系数 UA UA-1 − − 132.05 − 0.79 0.83 对比组 − − 1.00 UA-2 − − 144.18 − 0.87 − − 1.00 TA1 TA1-1 140.93 0.049 201.33 0.142 1.21 1.25 50.64 0.069 0.217 3.14 TA1-2 150.34 0.046 214.77 0.158 1.29 0.068 0.289 4.24 TA2 TA2-1 145.54 0.050 207.92 0.182 1.25 1.30 56.67 0.077 0.269 3.49 TA2-2 157.39 0.057 224.84 0.172 1.35 0.073 0.373 5.11 TA3 TA3-1 186.87 0.047 266.96 0.201 1.60 1.57 89.06 0.064 0.444 6.93 TA3-2 178.70 0.051 255.28 0.191 1.53 0.070 0.45 6.47 TA4 TA4-1 214.66 0.061 306.65 0.173 1.84 1.87 124.71 0.071 0.85 11.97 TA4-2 219.86 0.049 314.08 0.376 1.89 0.065 0.88 13.48 UB UB-1 − − 115.66 − 0.70 0.65 对比组 − − 1.00 UB-2 − − 99.89 − 0.60 − − 1.00 TB TB-1 151.05 0.039 215.78 0.143 1.30 1.24 92.01 0.055 0.285 5.22 TB-2 138.66 0.042 198.09 0.148 1.19 0.061 0.421 6.91 表 6 试验值和计算值对比
Table 6. Comparison between calculated value and test value
试件组 砌体贡献值
Vm/kN加固层贡献值
Vf/kN计算值
(Vm+Vf)/kN 试验值/kN TA3 16.1 11.1 27.2 261.1 TA4 16.1 22.1 38.2 310.4 TB 12.7 11.1 23.8 206.9 表 7 初步优化后计算值
Table 7. Calculated value after preliminary optimization
试件组 初步优化后
砌体贡献值
$V_{\rm{m}}' $/kN初步优化后
加固层贡献值
$ {V'_{\text{f} } } $/kN初步优化后
计算值
($ V'_{\rm{m} }+{V'_{\text{f} } } $)/kN试验值/kN TA3 80.9 60.5 141.4 261.1 TA4 80.9 120.4 201.3 310.4 TB 71.4 60.5 131.9 206.9 表 8 优化后计算值与试验值对比
Table 8. Comparison between calculated value and test value after optimization
试件组 优化后计算值/kN 试验值/kN 优化后计算值/试验值 TA3 258.7 261.1 0.991 TA4 307.1 310.4 0.989 TB 196.9 206.9 0.952 -
[1] GARCIA-RAMONDA L, PELÀ L, ROCA P, et al. Experimental cyclic behaviour of shear masonry walls reinforced with single and double layered steel reinforced grout [J]. Construction and Building Materials, 2022, 320: 126053. doi: 10.1016/j.conbuildmat.2021.126053 [2] ZHANG Y Q, LIN X C, WANG T, et al. Seismic behavior of masonry walls strengthened by precast reinforced concrete panels with different connection details [J]. Engineering Structures, 2021, 242: 112597. doi: 10.1016/j.engstruct.2021.112597 [3] 王啸霆, 陈曦, 王涛, 等. 外套整体式加固砌体结构抗震性能试验研究[J]. 工程力学, 2022, 39(2): 123 − 135. doi: 10.6052/j.issn.1000-4750.2020.12.0931WANG Xiaoting, CHEN Xi, WANG Tao, et al. Experimental study of a masonry building retrofitted integrally by pre-fabricated RC panels [J]. Engineering Mechanics, 2022, 39(2): 123 − 135. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0931 [4] 邓明科, 马向琨, 张伟, 等. 高延性混凝土加固蒸压加气混凝土砌体墙抗震性能试验研究[J]. 工程力学, 2021, 38(7): 9 − 18. doi: 10.6052/j.issn.1000-4750.2020.06.0336DENG Mingke, MA Xiangkun, ZHANG Wei, et al. Experimental studies on aseismic behavior of autoclaved aerated concrete masonry walls strengthened with HDC [J]. Engineering Mechanics, 2021, 38(7): 9 − 18. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0336 [5] 万军. 碳纤维布加固砌体填充墙抗近距离小当量炸药爆炸数值模拟研究[J]. 工程力学, 2020, 37(增刊 1): 82 − 90. doi: 10.6052/j.issn.1000-4750.2019.04.S012WAN Jun. Numerical simulation of CFRP reinforced concrete masonry wall against small stand-off distance explosive charge [J]. Engineering Mechanics, 2020, 37(Suppl 1): 82 − 90. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S012 [6] 杜运兴, 张蒙蒙, 周芬. 玄武岩纤维TRC板拉伸性能试验研究[J]. 湖南大学学报(自然科学版), 2018, 45(1): 61 − 67. doi: 10.16339/j.cnki.hdxbzkb.2018.01.008DU Yunxing, ZHANG Mengmeng, ZHOU Fen. Experimental study on tensile performance of basalt TRC plate [J]. Journal of Hunan University (Natural Sciences), 2018, 45(1): 61 − 67. (in Chinese) doi: 10.16339/j.cnki.hdxbzkb.2018.01.008 [7] 李祯, 李晔. 玄武岩编织网复合ECC增强钢筋混凝土圆柱体轴向受压性能研究[J]. 建筑结构, 2017, 47(9): 40 − 44. doi: 10.19701/j.jzjg.2017.09.009LI Zhen, LI Ye. Axial compression performance study on basalt braided mesh composite ECC reinforced concrete cylinder [J]. Building Structure, 2017, 47(9): 40 − 44. (in Chinese) doi: 10.19701/j.jzjg.2017.09.009 [8] 艾珊霞, 尹世平, 徐世烺. 纤维编织网增强混凝土的研究进展及应用[J]. 土木工程学报, 2015, 48(1): 27 − 40. doi: 10.15951/j.tmgcxb.2015.01.004AI Shanxia, YIN Shiping, XU Shilang. A review on the development of research and application of textile reinforced concrete [J]. China Civil Engineering Journal, 2015, 48(1): 27 − 40. (in Chinese) doi: 10.15951/j.tmgcxb.2015.01.004 [9] KALALI A, KABIR M Z. Experimental response of double-wythe masonry panels strengthened with glass fiber reinforced polymers subjected to diagonal compression tests [J]. Engineering Structures, 2012, 39: 24 − 37. doi: 10.1016/j.engstruct.2012.01.018 [10] MEZREA P E, YILMAZ I A, ISPIR M, et al. External jacketing of unreinforced historical masonry piers with open-grid basalt-reinforced mortar [J]. Journal of Composites for Construction, 2017, 21(3): 04016110. doi: 10.1061/(ASCE)CC.1943-5614.0000770 [11] FOSSETTI M, MINAFÒ G. Comparative experimental analysis on the compressive behaviour of masonry columns strengthened by FRP, BFRCM or steel wires [J]. Composites Part B: Engineering, 2017, 112: 112 − 124. doi: 10.1016/j.compositesb.2016.12.048 [12] KARIOU F A, TRIANTAFYLLOU S P, BOURNAS D A, et al. Out-of-plane response of masonry walls strengthened using textile-mortar system [J]. Construction and Building Materials, 2018, 165: 769 − 781. doi: 10.1016/j.conbuildmat.2018.01.026 [13] MARCARI G, BASILI M, VESTRONI F. Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar [J]. Composites Part B: Engineering, 2017, 108: 131 − 142. doi: 10.1016/j.compositesb.2016.09.094 [14] 尹世平, 成帅安, 荆磊. FRP和TRC加固砌体墙受剪性能试验研究[J]. 建筑结构学报, 2020, 41(增刊 1): 315 − 322. doi: 10.14006/j.jzjgxb.2020.S1.035YIN Shiping, CHENG Shuaian, JING Lei. Experimental research on shear performance of masonry wall strengthened with FRP and TRC [J]. Journal of Building Structures, 2020, 41(Suppl 1): 315 − 322. (in Chinese) doi: 10.14006/j.jzjgxb.2020.S1.035 [15] ASTM E519/E519M-15, Standard test method for diagonal tension (shear) in masonry assemblages [S]. West Conshohocken: ASTM, 2015. [16] 黄奕辉, 陈华艳, 罗才松. 玻璃纤维布包裹加固砖柱轴压试验研究与极限承载力分析[J]. 建筑结构学报, 2009, 30(2): 136 − 142. doi: 10.3321/j.issn:1000-6869.2009.02.017HUANG Yihui, CHEN Huayan, LUO Caisong. Experiment study and analysis of ultimate capacity on brick masonry columns wrapped with glass fiber reinforced plastic sheet under axial compression [J]. Journal of Building Structures, 2009, 30(2): 136 − 142. (in Chinese) doi: 10.3321/j.issn:1000-6869.2009.02.017 [17] KADAM S B, SINGH Y, LI B. Strengthening of unreinforced masonry using welded wire mesh and micro-concrete-Behaviour under in-plane action [J]. Construction and Building Materials, 2014, 54: 247 − 257. doi: 10.1016/j.conbuildmat.2013.12.033 [18] MARCARI G, MANFREDI G, PROTA A, et al. In-plane shear performance of masonry panels strengthened with FRP [J]. Composites Part B: Engineering, 2007, 38(7/8): 887 − 901. [19] 刘立新. 砌体结构[M]. 4版. 武汉: 武汉理工大学出版社, 2012: 13.LIU Lixin. Masonry structure [M]. 4th ed. Wuhan: Wuhan University of Technology Press, 2012: 13. (in Chinese) [20] 尹双增. 断裂、损伤理论及应用[M]. 北京: 清华大学出版社, 1992.YIN Shuangzeng. Fracture and damage theories and their application [M]. Beijing: Tsinghua University Press, 1992. (in Chinese) [21] 北京钢铁研究院金属物理室. 工程断裂力学-上册[M]. 北京: 国防工业出版社, 1977.Laboratory of Metal Physics of Beijing Iron and Steel Research Institute. Engineering fracture mechanics [M]. Beijing: National Defense Industry Press, 1977. (in Chinese) [22] 蔡四维, 蔡敏. 混凝土的损伤断裂[M]. 北京: 人民交通出版社, 1999.CAI Siwei, CAI Min. Damage and fracture of concrete [M]. Beijing: China Communications Press, 1999. (in Chinese) [23] ACI 549.4R-13, Guide to design and construction of externally bonded fabric-reinforced cementitious matrix (FRCM) systems for repair and strengthening concrete and masonry structures [S]. Farmington Hills: ACI, 2013. [24] LI T, GALATI N, TUMIALAN J G, et al. Analysis of unreinforced masonry concrete walls strengthened with glass fiber-reinforced polymer bars [J]. ACI Structural Journal, 2005, 102(4): 569 − 577. [25] SILVA P F, YU P Y, NANNI A. Monte Carlo simulation of shear capacity of URM walls retrofitted by polyurea reinforced GFRP grids [J]. Journal of Composites for Construction, 2008, 12(4): 405 − 415. doi: 10.1061/(ASCE)1090-0268(2008)12:4(405) [26] PAULAY T, PRIESTLEY M J N. Seismic design of reinforced concrete and masonry buildings [M]. New York: Wiley, 1992. [27] BABAEIDARABAD S, ARBOLEDA D, LORETO G, et al. Shear strengthening of un-reinforced concrete masonry walls with fabric-reinforced-cementitious-matrix [J]. Construction and Building Materials, 2014, 65: 243 − 253. doi: 10.1016/j.conbuildmat.2014.04.116 [28] BABAEIDARABAD S, DE CASO F, NANNI A. URM walls strengthened with fabric-reinforced cementitious matrix composite subjected to diagonal compression [J]. Journal of Composites for Construction, 2014, 18(2): 04013045. doi: 10.1061/(ASCE)CC.1943-5614.0000441 [29] MENNA C, BALSAMO A, MADDALONI G, et al. Comparative assessment of the tensile behavior of steel and textile reinforced mortar systems [C]. Symposium Paper, 2018, 324(2): 17 − 34. [30] ISMAIL N, EL-MAADDAWY T, KHATTAK N, et al. In-plane shear strength improvement of hollow concrete masonry panels using a fabric-reinforced cementitious matrix [J]. Journal of Composites for Construction, 2018, 22(2): 04018004. doi: 10.1061/(ASCE)CC.1943-5614.0000835 [31] DEL ZOPPO M, DI LUDOVICO M, BALSAMO A, et al. Experimental in-plane shear capacity of clay brick masonry panels strengthened with FRCM and FRM composites [J]. Journal of Composites for Construction, 2019, 23(5): 04019038. doi: 10.1061/(ASCE)CC.1943-5614.0000965 -