RESEARCH ON HORIZONTAL BEARING CAPACITY OF MONOPILE SUPPORTING STRUCTURE OF OFFSHORE WIND TURBINE BASED ON EFFICIENT PILE FINIT-ELEMENT METHOD
-
摘要: 海上风力发电机单桩支撑结构由单桩、过渡段和锥形塔筒组成。海洋土体变异性大和风机塔筒变截面的特点大幅增大了使用离散弹簧法进行支撑结构计算的梁单元划分量。为实现对风机支撑结构的高效模拟,该文提出了一种改进的欧拉-伯努利梁单元,该单元实现了桩土相互作用关系的内置和对单元变截面的考虑,相较于传统梁单元大幅度减少了单元划分量。该文在单层与多层土体中验证了上述单元的精确性与高效性,并研究了新型单元在风机单桩支撑结构计算中的适用性。在此基础上,进行了风机单桩水平承载性能参数分析,研究了桩长与桩径对大直径桩水平变形规律和承载力的联合影响,研究给出了不同于现有规范的刚性短桩-中长桩划分的相对刚度特征值临界范围。Abstract: The monopile supporting structure of offshore wind turbine is composed of monopiles, transitions and conical towers. The large variability of Marine Soil and the characteristic of variable cross-section of wind turbine tower greatly increase the number of divided beam elements in finite element calculation of supporting structures using discrete spring method. In order to achieve efficient simulation of monopile supporting structure, an improved Euler-Bernoulli beam element was proposed in this paper. This element realized the built-in relationship between pile and soil, and could consider the variable section effect of tower section. Compared with traditional beam element, the number of divided elements was reduced greatly by using the improved element. The accuracy and efficiency of the improved element was verified in single-layer and multi-layer soil, and the applicability of the element to the calculation of monopile supporting structure was studied. This paper carried out a parameter analysis of monopile lateral bearing capacity, which analyzed the combined influence of pile length and diameter on lateral deformation characteristics and bearing capacity of large diameter piles. And the research suggested a new critical range of relative stiffness eigenvalues between rigid short pile and medium long pile, which is different from that given in existing standard.
-
类型 厚度/m 重度/(kN·m−3) 摩擦角/(°) 土层锥尖阻力/kPa 粉砂 50 19.7 32 5860 表 2 桩基参数
Table 2. Pile parameters
材料 桩长/m 壁厚/mm 上端直径/m 下端直径/m Q345 40 75 5 5 类型 厚度/m 重度/
(kN·m−3)摩擦角/
(°)粘聚力/
kPa土层锥尖
阻力/kPa淤泥质粉粘土 3.2 16.2 0 5 800 粉质粘土 7.6 19.0 0 35 1930 粉砂 31.1 20.5 30 0 5860 表 4 风机支撑结构参数
Table 4. Parameters of wind turbine support structure
参数 参数值 塔筒长度L1/m 100 桩基长度L2/m 40 塔筒底部半径D1/m 5 塔筒顶部半径D2 /m 3 壁厚tw/mm 75 弹性模量/MPa 2.06×105 泊松比 0.3 土层类型 厚度/m 重度/(kN/m3) 土层锥尖阻力/kPa 粉土 5.2 19.9 3030 粉砂 4.8 19.7 5860 粉砂 8.2 19.7 9920 粉质粘土 4.3 19.5 2310 粉质粘土 6.5 19.5 2110 层状粉土 7.5 19.7 4890 粉砂 5.5 19.1 10 980 表 6 基于叶素-动量理论得到的2 MW叶轮气动力值[35]
Table 6. Aerodynamic value of 2 MW impeller based on blade element momentum theory[35]
平均风速
V10/(m·s−1)水平力T/
kN弯矩M/
(kN·m)平均风速
V10/(m·s−1)水平力T/
kN弯矩M/
(kN·m)4.5 71.5 222.6 15.5 286.4 2179.2 6.5 148.2 461.5 17.5 305.7 2523.3 8.5 240.6 1054.3 19.5 292.4 2319.2 10.5 278.1 1468.6 21.5 287.3 2709.1 12.5 288.7 1741.6 23.5 353.4 3396.8 14.5 291.7 1922.2 24.5 360.9 3480.2 表 7 桩基变形模式评判标准
Table 7. Evaluation criteria for pile foundation deformation mode
弹性长桩 中长桩 刚性桩 L≥4T 4T≥L≥2.5T 2.5T≥L 表 8 不同参数组合下桩基L/T值
Table 8. L/T value of pile under different parameter combinations
桩长/m 直径/m D=3 m D=4 m D=5 m D=6 m D=7 m D=8 m D=9 m 15 0.57 0.50 0.45 0.41 0.39 0.37 0.35 20 0.75 0.66 0.60 0.55 0.52 0.49 0.46 25 0.94 0.83 0.75 0.69 0.65 0.61 0.58 30 1.13 0.99 0.90 0.83 0.77 0.73 0.70 35 1.32 1.16 1.05 0.97 0.90 0.85 0.81 40 1.51 1.32 1.20 1.10 1.03 0.97 0.93 45 1.7 1.49 1.34 1.24 1.16 1.10 1.04 50 1.88 1.65 1.49 1.38 1.29 1.22 1.16 -
[1] 席仁强, 许成顺, 杜修力, 等. 风-波浪荷载对海上风机地震响应的影响[J]. 工程力学, 2020, 37(11): 58 − 68. doi: 10.6052/j.issn.1000-4750.2019.12.0715XI Renqiang, XU Chengshun, DU Xiuli, et al. Effects of wind-wave loadings on the seismic response of offshore wind turbines [J]. Engineering Mechanics, 2020, 37(11): 58 − 68. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0715 [2] WANG X F, ZENG X W, LI J L, et al. A review on recent advancements of substructures for offshore wind turbines [J]. Energy Conversion and Management, 2018, 158: 103 − 119. doi: 10.1016/j.enconman.2017.12.061 [3] QI W G, GAO F P. Equilibrium scour depth at offshore monopile foundation in combined waves and current [J]. Science China-technological Sciences, 2014, 57(5): 1030 − 1039. doi: 10.1007/s11431-014-5538-9 [4] GHORBANZADEH M, UYGAR E, SENSOY S. Lateral soil pile structure interaction assessment for semi active tuned mass damper buildings [J]. Structures, 2021, 29: 1362 − 1379. doi: 10.1016/j.istruc.2020.12.020 [5] VEGA-POSADA C A, GALLANT A P, AREIZA-HURTADO M. Simple approach for analysis of beam-column elements on homogeneous and non-homogeneous elastic soil [J]. Engineering Structures, 2020, 221: 111110. doi: 10.1016/j.engstruct.2020.111110 [6] MCCLELLAND B, FOCHT JR J A. Soil modulus for laterally loaded piles [J]. Journal of the Soil Mechanics and Foundations Division, 1956, 82(4): 1049 − 1063. [7] REESE L C, COX W R, KOOP F D. Analysis of laterally loaded piles in sand [C]. Houston, Texas: Offshore Technology Conference, 1974. [8] API RP 2GEO, Geotechnical and foundation design considerations [S]. Washington, DC: American Petroleum Institute, 2011. [9] SCOTT R F. Analysis of centrifuge pile tests; simulation of pile-driving [R]. Pasadena: California Institute of Technology, 1980. [10] JEWELL R J, Engineering for calcareous sediments [M]. London: CRC Press, 1988: 344−344. [11] KIM B T, KIM N K, LEE W J, et al. Experimental load–transfer curves of laterally loaded piles in Nak-Dong River sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 416 − 425. doi: 10.1061/(ASCE)1090-0241(2004)130:4(416) [12] MATLOCK H. Correlation for design of laterally loaded piles in soft clay [C]. Houston, Texas: Offshore Technology Conference, 1970. [13] REESE L C, WELCH R C. Lateral loading of deep foundations in stiff clay [J]. Journal of the Geotechnical Engineering Division, 1975, 101(7): 633 − 649. [14] SULLIVAN W R, REESE L C, FENSKE C W. Unified method for analysis of laterally loaded piles in clay [M]. First ed. London: Thomas Telford, 2015. [15] 王惠初, 武冬青, 田平. 粘土中横向静载桩 P-Y 曲线的一种新的统一法[J]. 河海大学学报: 自然科学版, 1991, 19(1): 9 − 17.WANG Huichu, WU Dongqing, TIAN Ping. A new unitedd method of P-Y curves of laterally statically loaded piles in clay [J]. Journal of Hehai University: Natural Science Edition, 1991, 19(1): 9 − 17. (in Chinese) [16] YANG M, GE B, LI W. Force on the laterally loaded monopile in sandy soil [J]. European Journal of Environmental and Civil Engineering, 2020, 24(10): 1623 − 1642. doi: 10.1080/19648189.2018.1481769 [17] YAN L I, BYRNE P M. Lateral pile response to monotonie pile head loading [J]. Canadian Geotechnical Journal, 1992, 29(6): 955 − 970. doi: 10.1139/t92-106 [18] 朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35(10): 1807 − 1815.ZHU Bin, XIONG Gen, LIU Jinchao, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1807 − 1815. (in Chinese) [19] 张海洋, 刘润, 袁宇, 等. 海上大直径单桩基础 p-y 曲线修正[J]. 水利学报, 2020, 51(2): 201 − 211.ZHANG Haiyang, LIU Run, YUAN Yu, et al. A modified p-y curve method for offshore large-diameter monopile foundations [J]. Journal of Hydraulic Engineering, 2020, 51(2): 201 − 211. (in Chinese) [20] 孙毅龙, 许成顺, 杜修力, 等. 海上风电大直径单桩的修正 p-y 曲线模型[J]. 工程力学, 2021, 38(4): 44 − 53. doi: 10.6052/j.issn.1000-4750.2020.01.0051SUN Yilong, XU Chengshun, DU Xiuli, et al. A modified p-y curve model of large-monopiles of offshore wind power plants [J]. Engineering Mechanics, 2021, 38(4): 44 − 53. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0051 [21] SCHNAID F, HOULSBY G T. An assessment of chamber size effects in the calibration of in situ tests in sand [J]. Géotechnique, 1991, 41(3): 437 − 445. doi: 10.1680/geot.1991.41.3.437 [22] LEE J, KIM M, KYUNG D. Estimation of lateral load capacity of rigid short piles in sands using CPT results [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 48 − 56. doi: 10.1061/(ASCE)GT.1943-5606.0000199 [23] 周全智, 迟洪明, 吴永祥. 不同桩土模型对海上风机单桩基础设计的影响研究[J]. 建筑结构, 2018, 48(增刊 2): 834 − 837.ZHOU Quanzhi, CHI Hongming, WU Yongxiang. Study on the influence of different pile-soil models on the design of single pile foundation of offshore fan [J]. Building Structure, 2018, 48(Suppl 2): 834 − 837. (in Chinese) [24] URIBE-HENAO A F, ZAPATA-MEDINA D G, ARBOLEDA-MONSALVE L G, et al. Static and dynamic stability of a multi-stepped Timoshenko column including self-weight [J]. Structures, 2018, 15: 28 − 42. doi: 10.1016/j.istruc.2018.05.004 [25] LI X Y, WAN J H, LIU S W, et al. Numerical formulation and implementation of Euler-Bernoulli pile elements considering soil-structure-interaction responses [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(14): 1903 − 1925. doi: 10.1002/nag.3113 [26] SURYASENTANA S, LEHANE B M. Numerical derivation of CPT-based p-y curves for piles in sand [J]. Civil and Environmental Engineering, 2015, 64(3): 186 − 194. doi: 10.1680/geot.13.P.026 [27] GUO F J, LEHANE B M, JU J. Experimentally derived CPT-based p-y curves for soft clay [C]// 3rd International Symposium on Cone Penetration Testing. Vegas: International Symposium on Cone Penetration Testing. 2014: 1021−1028. [28] WAN J H, LIU S W, LI X Y, et al. Buckling analysis of tapered piles using non-prismatic beam-column element model [J]. Computers and Geotechnics, 2021, 139: 104370. [29] SAKR M, EL NAGGAR M H, NEHDI M. Lateral behaviour of composite tapered piles in dense sand [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2005, 158(3): 145 − 157. doi: 10.1680/geng.2005.158.3.145 [30] PAIK K, LEE J, KIM D. Calculation of the axial bearing capacity of tapered bored piles [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2013, 166(5): 502 − 514. doi: 10.1680/geng.10.00127 [31] LIU S W, BAI R, CHAN S L. Second-order analysis of non-prismatic steel members by tapered beam–column elements [J]. Structures, 2016, 6: 108 − 118. doi: 10.1016/j.istruc.2016.02.006 [32] LIU S W, WAN J H, ZHOU C Y, et al. Efficient beam–column finite-element method for stability design of slender single pile in soft ground mediums [J]. International Journal of Geomechanics, 2020, 20(1): 04019148. [33] 王国粹, 王伟, 杨敏. 3.6 MW 海上风机单桩基础设计与分析[J]. 岩土工程学报, 2011, 33(增刊 2): 95 − 100.WANG Guocui, WANG Wei, YANG Min. Design and analysis of monopile foundation for 3.6 MW offshore wind turbine [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Suppl 2): 95 − 100. (in Chinese) [34] 蒋友宝, 刘志, 贺广零, 等. 考虑脉动风场的3MW风机钢塔筒基础底板脱开失效概率[J]. 工程力学, 2021, 38(5): 199 − 208. doi: 10.6052/j.issn.1000-4750.2020.07.0426JIANG Youbao, LIU Zhi, HE Guangling, et al. Failure probability of foundation slab void for 3 MW wind turbine steel tower considering turbulent wind field [J]. Engineering Mechanics, 2021, 38(5): 199 − 208. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0426 [35] 莫继华. 近海风电机组单桩式支撑结构疲劳分析[D]. 上海: 上海交通大学, 2011.MO Jihua. Fatigue analysis of offshore wind turbine mono-pile support structure [D]. Shanghai: Shanghai Jiao Tong University, 2011. (in Chinese) [36] JTS 167-4−2012, 港口工程桩基规范[S]. 北京: 人民交通出版社, 2012.JTS 167-4−2012, Code for pile foundation of harbor engineering [S]. Beijing: China Communications Press, 2012. (in Chinese) [37] 马倩雯. 大直径钢管桩水平承载能力研究[D]. 天津: 天津大学, 2018.MA Qianwen. Research on horizontal load-bearing capacity of large diameter steel pipe piles [D]. Tianjin: Tianjin University, 2018. (in Chinese) -