留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高性能桩单元法的海上风机单桩支撑结构水平承载力研究

张舒烨 刘思威 马会环

张舒烨, 刘思威, 马会环. 基于高性能桩单元法的海上风机单桩支撑结构水平承载力研究[J]. 工程力学, 2023, 40(11): 99-109. doi: 10.6052/j.issn.1000-4750.2022.01.0112
引用本文: 张舒烨, 刘思威, 马会环. 基于高性能桩单元法的海上风机单桩支撑结构水平承载力研究[J]. 工程力学, 2023, 40(11): 99-109. doi: 10.6052/j.issn.1000-4750.2022.01.0112
ZHANG Shu-ye, LIU Si-wei, MA Hui-huan. RESEARCH ON HORIZONTAL BEARING CAPACITY OF MONOPILE SUPPORTING STRUCTURE OF OFFSHORE WIND TURBINE BASED ON EFFICIENT PILE FINIT-ELEMENT METHOD[J]. Engineering Mechanics, 2023, 40(11): 99-109. doi: 10.6052/j.issn.1000-4750.2022.01.0112
Citation: ZHANG Shu-ye, LIU Si-wei, MA Hui-huan. RESEARCH ON HORIZONTAL BEARING CAPACITY OF MONOPILE SUPPORTING STRUCTURE OF OFFSHORE WIND TURBINE BASED ON EFFICIENT PILE FINIT-ELEMENT METHOD[J]. Engineering Mechanics, 2023, 40(11): 99-109. doi: 10.6052/j.issn.1000-4750.2022.01.0112

基于高性能桩单元法的海上风机单桩支撑结构水平承载力研究

doi: 10.6052/j.issn.1000-4750.2022.01.0112
基金项目: 国家自然科学基金项目(52008410);香港教育资助局优配研究金(GRF)项目(PolyU/21E/15203121)
详细信息
    作者简介:

    张舒烨(2000−),男,江西人,硕士生,主要从事海上风电桩基础研究(E-mail: zhangshy65@mail2.sysu.edu.cn)

    马会环(1982−),女,内蒙古人,副教授,博士,主要从事结构工程研究(E-mail: mahh5@mail.sysu.edu.cn)

    通讯作者:

    刘思威(1985−),男,广东人,助理教授,博士,主要从事计算结构力学研究(E-mail: si-wei.liu@polyu.edu.hk)

  • 中图分类号: TU473.1+2

RESEARCH ON HORIZONTAL BEARING CAPACITY OF MONOPILE SUPPORTING STRUCTURE OF OFFSHORE WIND TURBINE BASED ON EFFICIENT PILE FINIT-ELEMENT METHOD

  • 摘要: 海上风力发电机单桩支撑结构由单桩、过渡段和锥形塔筒组成。海洋土体变异性大和风机塔筒变截面的特点大幅增大了使用离散弹簧法进行支撑结构计算的梁单元划分量。为实现对风机支撑结构的高效模拟,该文提出了一种改进的欧拉-伯努利梁单元,该单元实现了桩土相互作用关系的内置和对单元变截面的考虑,相较于传统梁单元大幅度减少了单元划分量。该文在单层与多层土体中验证了上述单元的精确性与高效性,并研究了新型单元在风机单桩支撑结构计算中的适用性。在此基础上,进行了风机单桩水平承载性能参数分析,研究了桩长与桩径对大直径桩水平变形规律和承载力的联合影响,研究给出了不同于现有规范的刚性短桩-中长桩划分的相对刚度特征值临界范围。
  • 图  1  单桩基础数值模拟方法

    Figure  1.  Numerical simulation method of monopile

    图  2  新方法与传统方法的比较

    Figure  2.  Comparison between new method and traditional method

    图  3  单元节点位移和节点力分量

    Figure  3.  Element node displacement and node force components

    图  4  压缩后的单元节点位移和节点力分量

    Figure  4.  Element node displacement and node force components after compression

    图  5  考虑大直径效应的p-y曲线

    Figure  5.  p-y curve considering large diameter effect

    图  6  不同单元数目下高性能桩单元水平位移曲线

    Figure  6.  Horizontal displacement curve of efficient element under different number of elements

    图  7  两类单元水平位移-荷载曲线

    Figure  7.  Lateral displacement-load curve of two kinds of elements

    图  8  不同单元数目下两类单元水平位移-荷载对比曲线

    Figure  8.  Lateral displacement-load curve of two kinds of element under different element number

    图  9  风机支撑结构参数

    Figure  9.  Parameters of wind turbine support structure

    图  10  实体单元有限元模型示意图

    Figure  10.  Schematic diagram of solid element finite element model

    图  11  4种工况下桩体水平变形曲线

    Figure  11.  Horizontal displacement curve of pile under four working conditions

    图  12  不同桩长、桩径桩水平位移曲线

    Figure  12.  Horizontal displacement curves of piles with different pile lengths and diameters

    图  13  不同桩长-桩径组合桩基水平承载力云图

    Figure  13.  Horizontal bearing capacity of pile with different lengths and diameters

    表  1  单层土体参数[23]

    Table  1.   Single layer soil parameters[23]

    类型厚度/m重度/(kN·m−3)摩擦角/(°)土层锥尖阻力/kPa
    粉砂5019.7325860
    下载: 导出CSV

    表  2  桩基参数

    Table  2.   Pile parameters

    材料桩长/m壁厚/mm上端直径/m下端直径/m
    Q345407555
    下载: 导出CSV

    表  3  多层土体参数[33]

    Table  3.   Multi layer soil parameters[33]

    类型厚度/m重度/
    (kN·m−3)
    摩擦角/
    (°)
    粘聚力/
    kPa
    土层锥尖
    阻力/kPa
    淤泥质粉粘土3.216.205800
    粉质粘土7.619.00351930
    粉砂31.120.53005860
    下载: 导出CSV

    表  4  风机支撑结构参数

    Table  4.   Parameters of wind turbine support structure

    参数参数值
    塔筒长度L1/m100
    桩基长度L2/m40
    塔筒底部半径D1/m5
    塔筒顶部半径D2 /m3
    壁厚tw/mm75
    弹性模量/MPa2.06×105
    泊松比0.3
    下载: 导出CSV

    表  5  风机基础埋置土层参数[23]

    Table  5.   Parameters of buried soil layer for wind turbine foundation[23]

    土层类型厚度/m重度/(kN/m3)土层锥尖阻力/kPa
    粉土5.219.93030
    粉砂4.819.75860
    粉砂8.219.79920
    粉质粘土4.319.52310
    粉质粘土6.519.52110
    层状粉土7.519.74890
    粉砂5.519.110 980
    下载: 导出CSV

    表  6  基于叶素-动量理论得到的2 MW叶轮气动力值[35]

    Table  6.   Aerodynamic value of 2 MW impeller based on blade element momentum theory[35]

    平均风速
    V10/(m·s−1)
    水平力T/
    kN
    弯矩M/
    (kN·m)
    平均风速
    V10/(m·s−1)
    水平力T/
    kN
    弯矩M/
    (kN·m)
    4.571.5222.615.5286.42179.2
    6.5148.2461.517.5305.72523.3
    8.5240.61054.319.5292.42319.2
    10.5278.11468.621.5287.32709.1
    12.5288.71741.623.5353.43396.8
    14.5291.71922.224.5360.93480.2
    下载: 导出CSV

    表  7  桩基变形模式评判标准

    Table  7.   Evaluation criteria for pile foundation deformation mode

    弹性长桩中长桩刚性桩
    L≥4T4TL≥2.5T2.5TL
    下载: 导出CSV

    表  8  不同参数组合下桩基L/T

    Table  8.   L/T value of pile under different parameter combinations

    桩长/m直径/m
    D=3 mD=4 mD=5 mD=6 mD=7 mD=8 mD=9 m
    15 0.57 0.50 0.45 0.41 0.39 0.37 0.35
    20 0.75 0.66 0.60 0.55 0.52 0.49 0.46
    25 0.94 0.83 0.75 0.69 0.65 0.61 0.58
    30 1.13 0.99 0.90 0.83 0.77 0.73 0.70
    35 1.32 1.16 1.05 0.97 0.90 0.85 0.81
    40 1.51 1.32 1.20 1.10 1.03 0.97 0.93
    45 1.7 1.49 1.34 1.24 1.16 1.10 1.04
    50 1.88 1.65 1.49 1.38 1.29 1.22 1.16
    下载: 导出CSV
  • [1] 席仁强, 许成顺, 杜修力, 等. 风-波浪荷载对海上风机地震响应的影响[J]. 工程力学, 2020, 37(11): 58 − 68. doi: 10.6052/j.issn.1000-4750.2019.12.0715

    XI Renqiang, XU Chengshun, DU Xiuli, et al. Effects of wind-wave loadings on the seismic response of offshore wind turbines [J]. Engineering Mechanics, 2020, 37(11): 58 − 68. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0715
    [2] WANG X F, ZENG X W, LI J L, et al. A review on recent advancements of substructures for offshore wind turbines [J]. Energy Conversion and Management, 2018, 158: 103 − 119. doi: 10.1016/j.enconman.2017.12.061
    [3] QI W G, GAO F P. Equilibrium scour depth at offshore monopile foundation in combined waves and current [J]. Science China-technological Sciences, 2014, 57(5): 1030 − 1039. doi: 10.1007/s11431-014-5538-9
    [4] GHORBANZADEH M, UYGAR E, SENSOY S. Lateral soil pile structure interaction assessment for semi active tuned mass damper buildings [J]. Structures, 2021, 29: 1362 − 1379. doi: 10.1016/j.istruc.2020.12.020
    [5] VEGA-POSADA C A, GALLANT A P, AREIZA-HURTADO M. Simple approach for analysis of beam-column elements on homogeneous and non-homogeneous elastic soil [J]. Engineering Structures, 2020, 221: 111110. doi: 10.1016/j.engstruct.2020.111110
    [6] MCCLELLAND B, FOCHT JR J A. Soil modulus for laterally loaded piles [J]. Journal of the Soil Mechanics and Foundations Division, 1956, 82(4): 1049 − 1063.
    [7] REESE L C, COX W R, KOOP F D. Analysis of laterally loaded piles in sand [C]. Houston, Texas: Offshore Technology Conference, 1974.
    [8] API RP 2GEO, Geotechnical and foundation design considerations [S]. Washington, DC: American Petroleum Institute, 2011.
    [9] SCOTT R F. Analysis of centrifuge pile tests; simulation of pile-driving [R]. Pasadena: California Institute of Technology, 1980.
    [10] JEWELL R J, Engineering for calcareous sediments [M]. London: CRC Press, 1988: 344−344.
    [11] KIM B T, KIM N K, LEE W J, et al. Experimental load–transfer curves of laterally loaded piles in Nak-Dong River sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(4): 416 − 425. doi: 10.1061/(ASCE)1090-0241(2004)130:4(416)
    [12] MATLOCK H. Correlation for design of laterally loaded piles in soft clay [C]. Houston, Texas: Offshore Technology Conference, 1970.
    [13] REESE L C, WELCH R C. Lateral loading of deep foundations in stiff clay [J]. Journal of the Geotechnical Engineering Division, 1975, 101(7): 633 − 649.
    [14] SULLIVAN W R, REESE L C, FENSKE C W. Unified method for analysis of laterally loaded piles in clay [M]. First ed. London: Thomas Telford, 2015.
    [15] 王惠初, 武冬青, 田平. 粘土中横向静载桩 P-Y 曲线的一种新的统一法[J]. 河海大学学报: 自然科学版, 1991, 19(1): 9 − 17.

    WANG Huichu, WU Dongqing, TIAN Ping. A new unitedd method of P-Y curves of laterally statically loaded piles in clay [J]. Journal of Hehai University: Natural Science Edition, 1991, 19(1): 9 − 17. (in Chinese)
    [16] YANG M, GE B, LI W. Force on the laterally loaded monopile in sandy soil [J]. European Journal of Environmental and Civil Engineering, 2020, 24(10): 1623 − 1642. doi: 10.1080/19648189.2018.1481769
    [17] YAN L I, BYRNE P M. Lateral pile response to monotonie pile head loading [J]. Canadian Geotechnical Journal, 1992, 29(6): 955 − 970. doi: 10.1139/t92-106
    [18] 朱斌, 熊根, 刘晋超, 等. 砂土中大直径单桩水平受荷离心模型试验[J]. 岩土工程学报, 2013, 35(10): 1807 − 1815.

    ZHU Bin, XIONG Gen, LIU Jinchao, et al. Centrifuge modelling of a large-diameter single pile under lateral loads in sand [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1807 − 1815. (in Chinese)
    [19] 张海洋, 刘润, 袁宇, 等. 海上大直径单桩基础 p-y 曲线修正[J]. 水利学报, 2020, 51(2): 201 − 211.

    ZHANG Haiyang, LIU Run, YUAN Yu, et al. A modified p-y curve method for offshore large-diameter monopile foundations [J]. Journal of Hydraulic Engineering, 2020, 51(2): 201 − 211. (in Chinese)
    [20] 孙毅龙, 许成顺, 杜修力, 等. 海上风电大直径单桩的修正 p-y 曲线模型[J]. 工程力学, 2021, 38(4): 44 − 53. doi: 10.6052/j.issn.1000-4750.2020.01.0051

    SUN Yilong, XU Chengshun, DU Xiuli, et al. A modified p-y curve model of large-monopiles of offshore wind power plants [J]. Engineering Mechanics, 2021, 38(4): 44 − 53. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0051
    [21] SCHNAID F, HOULSBY G T. An assessment of chamber size effects in the calibration of in situ tests in sand [J]. Géotechnique, 1991, 41(3): 437 − 445. doi: 10.1680/geot.1991.41.3.437
    [22] LEE J, KIM M, KYUNG D. Estimation of lateral load capacity of rigid short piles in sands using CPT results [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 48 − 56. doi: 10.1061/(ASCE)GT.1943-5606.0000199
    [23] 周全智, 迟洪明, 吴永祥. 不同桩土模型对海上风机单桩基础设计的影响研究[J]. 建筑结构, 2018, 48(增刊 2): 834 − 837.

    ZHOU Quanzhi, CHI Hongming, WU Yongxiang. Study on the influence of different pile-soil models on the design of single pile foundation of offshore fan [J]. Building Structure, 2018, 48(Suppl 2): 834 − 837. (in Chinese)
    [24] URIBE-HENAO A F, ZAPATA-MEDINA D G, ARBOLEDA-MONSALVE L G, et al. Static and dynamic stability of a multi-stepped Timoshenko column including self-weight [J]. Structures, 2018, 15: 28 − 42. doi: 10.1016/j.istruc.2018.05.004
    [25] LI X Y, WAN J H, LIU S W, et al. Numerical formulation and implementation of Euler-Bernoulli pile elements considering soil-structure-interaction responses [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(14): 1903 − 1925. doi: 10.1002/nag.3113
    [26] SURYASENTANA S, LEHANE B M. Numerical derivation of CPT-based p-y curves for piles in sand [J]. Civil and Environmental Engineering, 2015, 64(3): 186 − 194. doi: 10.1680/geot.13.P.026
    [27] GUO F J, LEHANE B M, JU J. Experimentally derived CPT-based p-y curves for soft clay [C]// 3rd International Symposium on Cone Penetration Testing. Vegas: International Symposium on Cone Penetration Testing. 2014: 1021−1028.
    [28] WAN J H, LIU S W, LI X Y, et al. Buckling analysis of tapered piles using non-prismatic beam-column element model [J]. Computers and Geotechnics, 2021, 139: 104370.
    [29] SAKR M, EL NAGGAR M H, NEHDI M. Lateral behaviour of composite tapered piles in dense sand [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2005, 158(3): 145 − 157. doi: 10.1680/geng.2005.158.3.145
    [30] PAIK K, LEE J, KIM D. Calculation of the axial bearing capacity of tapered bored piles [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2013, 166(5): 502 − 514. doi: 10.1680/geng.10.00127
    [31] LIU S W, BAI R, CHAN S L. Second-order analysis of non-prismatic steel members by tapered beam–column elements [J]. Structures, 2016, 6: 108 − 118. doi: 10.1016/j.istruc.2016.02.006
    [32] LIU S W, WAN J H, ZHOU C Y, et al. Efficient beam–column finite-element method for stability design of slender single pile in soft ground mediums [J]. International Journal of Geomechanics, 2020, 20(1): 04019148.
    [33] 王国粹, 王伟, 杨敏. 3.6 MW 海上风机单桩基础设计与分析[J]. 岩土工程学报, 2011, 33(增刊 2): 95 − 100.

    WANG Guocui, WANG Wei, YANG Min. Design and analysis of monopile foundation for 3.6 MW offshore wind turbine [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Suppl 2): 95 − 100. (in Chinese)
    [34] 蒋友宝, 刘志, 贺广零, 等. 考虑脉动风场的3MW风机钢塔筒基础底板脱开失效概率[J]. 工程力学, 2021, 38(5): 199 − 208. doi: 10.6052/j.issn.1000-4750.2020.07.0426

    JIANG Youbao, LIU Zhi, HE Guangling, et al. Failure probability of foundation slab void for 3 MW wind turbine steel tower considering turbulent wind field [J]. Engineering Mechanics, 2021, 38(5): 199 − 208. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0426
    [35] 莫继华. 近海风电机组单桩式支撑结构疲劳分析[D]. 上海: 上海交通大学, 2011.

    MO Jihua. Fatigue analysis of offshore wind turbine mono-pile support structure [D]. Shanghai: Shanghai Jiao Tong University, 2011. (in Chinese)
    [36] JTS 167-4−2012, 港口工程桩基规范[S]. 北京: 人民交通出版社, 2012.

    JTS 167-4−2012, Code for pile foundation of harbor engineering [S]. Beijing: China Communications Press, 2012. (in Chinese)
    [37] 马倩雯. 大直径钢管桩水平承载能力研究[D]. 天津: 天津大学, 2018.

    MA Qianwen. Research on horizontal load-bearing capacity of large diameter steel pipe piles [D]. Tianjin: Tianjin University, 2018. (in Chinese)
  • 加载中
图(13) / 表(8)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  72
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-23
  • 修回日期:  2022-06-27
  • 网络出版日期:  2022-10-12
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回