留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于构件损伤状态的复杂建筑抗震韧性评价方法研究

乔保娟 肖从真 杨志勇

乔保娟, 肖从真, 杨志勇. 基于构件损伤状态的复杂建筑抗震韧性评价方法研究[J]. 工程力学, 2023, 40(11): 21-30. doi: 10.6052/j.issn.1000-4750.2022.01.0100
引用本文: 乔保娟, 肖从真, 杨志勇. 基于构件损伤状态的复杂建筑抗震韧性评价方法研究[J]. 工程力学, 2023, 40(11): 21-30. doi: 10.6052/j.issn.1000-4750.2022.01.0100
QIAO Bao-juan, XIAO Cong-zhen, YANG Zhi-yong. RESEARCH ON SEISMIC RESILIENCE ASSESSMENT METHOD OF COMPLEX BUILDINGS BASED ON COMPONENT DAMAGE STATES[J]. Engineering Mechanics, 2023, 40(11): 21-30. doi: 10.6052/j.issn.1000-4750.2022.01.0100
Citation: QIAO Bao-juan, XIAO Cong-zhen, YANG Zhi-yong. RESEARCH ON SEISMIC RESILIENCE ASSESSMENT METHOD OF COMPLEX BUILDINGS BASED ON COMPONENT DAMAGE STATES[J]. Engineering Mechanics, 2023, 40(11): 21-30. doi: 10.6052/j.issn.1000-4750.2022.01.0100

基于构件损伤状态的复杂建筑抗震韧性评价方法研究

doi: 10.6052/j.issn.1000-4750.2022.01.0100
基金项目: 中国建筑科学研究院有限公司青年科研基金项目(20210122331030008);北京市自然科学基金项目(8212019)
详细信息
    作者简介:

    乔保娟(1987−),女,河南人,博士生,主要从事结构抗震及计算机仿真研究(E-mail: qiaobaojuan@cabrtech.com)

    杨志勇(1974−),男,黑龙江人,研究员,博士,主要从事结构抗震及计算机仿真研究(E-mail: yangzhiyong@cabrtech.com)

    通讯作者:

    肖从真(1967−),男,北京人,研究员,博士,博导,主要从事结构抗震研究(E-mail: xiaocongzhen@cabrtech.com)

  • 中图分类号: TU318

RESEARCH ON SEISMIC RESILIENCE ASSESSMENT METHOD OF COMPLEX BUILDINGS BASED ON COMPONENT DAMAGE STATES

  • 摘要: 传统建筑抗震韧性评价方法根据层间位移角判断结构构件损伤状态,适用于规则结构。为增强其对没有层概念的空间结构的适用性,提高楼层变形不均匀、扭转不规则结构的构件损伤状态判断的准确性,使之可以更灵活地适用于复杂建筑,该文采用基于材料应力-应变或构件转角的构件性能评价方法来判断构件损伤状态。以构件损伤状态为原始样本,通过对原始样本矩阵扩充产生大量构件损伤状态模拟样本,采用蒙特卡洛方法计算大量模拟样本的修复费用、修复时间及人员伤亡指标并进行概率分析得出韧性评价指标。为考虑地震动数目及非线性时程分析结果的离散性对抗震韧性评价指标的影响,评估韧性评价结果的可靠性,推导了韧性评价指标给定置信水平的置信区间的简化算法。通过一复杂框架剪力墙结构案例,验证了该文韧性评价方法的合理性与可行性。
  • 图  1  韧性评价流程

    Figure  1.  Process of seismic resilience assessment

    图  2  某办公楼模型

    Figure  2.  An office building model

    图  3  地震动反应谱

    Figure  3.  Response spectrum of ground motion

    图  4  层间位移角

    Figure  4.  Story drift ratio

    图  5  框架损伤情况

    Figure  5.  Damage state of frame

    图  6  剪力墙损伤情况

    Figure  6.  Damage state of wall

    图  7  修复费用概率分析

    Figure  7.  Probability analysis of repair cost

    图  8  修复时间概率分析

    Figure  8.  Probability analysis of repair time

    图  9  受伤率概率分析

    Figure  9.  Probability analysis of injury rate

    图  10  死亡率概率分析

    Figure  10.  Probability analysis of dead rate

    图  11  修复费用指标累积概率分布曲线

    Figure  11.  Cumulative probability distributions of repair cost index

    图  12  修复时间累积概率分布曲线

    Figure  12.  Cumulative probability distributions of repair time

    图  13  修复费用指标随地震强度变化曲线

    Figure  13.  Repair cost index at different earthquake intensities

    图  14  修复时间随地震强度变化曲线

    Figure  14.  Repair time at different earthquake intensities

    表  1  统计特征对比

    Table  1.   Comparison of statistical characteristics /(%)

    时程分析样本对数均值对数标准差84分位值
    4组人工模拟+7组
    实际强震记录
    原始小样本3.36080.459245.5
    模拟大样本3.31140.418441.6
    11组人工模拟地震动原始小样本3.07110.19326.1
    模拟大样本3.01930.145123.7
    下载: 导出CSV

    表  2  不同地震动数目的$ C $值和$ {C^S} $值

    Table  2.   The $ C $ and $ {C^S} $of different number of ground motions

    参数地震动数目
    1120304050100
    $ C $3.132.131.801.651.551.35
    $ {C^S} $$ S = 0.1 $1.121.081.061.051.041.03
    $ S = 0.2 $1.261.161.131.101.091.06
    $ S = 0.3 $1.411.251.191.161.141.09
    $ S = 0.4 $1.581.351.271.221.191.13
    $ S = 0.5 $1.771.461.341.281.251.16
    $ S = 0.6 $1.981.571.421.351.301.20
    下载: 导出CSV
  • [1] Wikipedia Contributors. List of tallest buildings in christchurch [EB], https://en.wikipedia.org/w/index.php?title=List_of_tallest_buildings_in_Christchurch&oldid=675499611, 10 August 2015, 23: 55.
    [2] Elnashai A S, Gencturk B, Kwon O S, et al. The Maule (Chile) earthquake of February 27, 2010: Consequence assessment and case studies (MAE Center Report No. 10-04) [R]. Urbana, Champaign, Ill: Department of Civil Engineering, University of Illinois, 2010.
    [3] FEMA. Seismic performance assessment of buildings: Volume 1-Methodology, Second Edition: FEMA P-58 [S]. Washington DC: Federal Emergency Management Agency, 2018.
    [4] FEMA. Performance assessment calculation tool [EB/OL]. http://femap58.atcouncil.org/pact, 2021-11-08.
    [5] ALMUFTI I, WILLFORD M. Redi rating system: Resilience-based earthquake design initiative for the next generation of buildings [R]. London: Arup, 2013.
    [6] U. S. Resiliency Council. Rating building performance in natural disasters [EB/OL]. https://www.usrc.org/usrc-rating-system, 2021-11-08.
    [7] HASIK V, CHHABRA J P S, WARN G P, et al. Review of approaches for integrating loss estimation and life cycle assessment to assess impacts of seismic building damage and repair [J]. Engineering Structures, 2018, 175: 123 − 137. doi: 10.1016/j.engstruct.2018.08.011
    [8] MENNA C, FELICIONI L, NEGRO P, et al. Review of methods for the combined assessment of seismic resilience and energy efficiency towards sustainable retrofitting of existing European buildings [J]. Sustainable Cities and Society, 2022, 77: 103556. doi: 10.1016/j.scs.2021.103556
    [9] SHADABFAR M, MAHSULI M, ZHANG Y, et al. Resilience-based design of infrastructure: Review of models, methodologies, and computational tools [J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering, 2022, 8(1): 03121004. doi: 10.1061/AJRUA6.0001184
    [10] 翟长海, 刘文, 谢礼立. 城市抗震韧性评估研究进展[J]. 建筑结构学报, 2018, 39(9): 1 − 9. doi: 10.14006/j.jzjgxb.2018.09.001

    ZHAI Changhai, LIU Wen, XIE Lili. Progress of research on city seismic resilience evaluation [J]. Journal of Building Structures, 2018, 39(9): 1 − 9. (in Chinese) doi: 10.14006/j.jzjgxb.2018.09.001
    [11] HUTT C M, ALMUFTI I, WILLFORD M, et al. Seismic loss and downtime assessment of existing tall steel-framed buildings and strategies for increased resilience [J]. Journal of Structural Engineering, 2016, 142(8): C4015005. doi: 10.1061/(ASCE)ST.1943-541X.0001314
    [12] TIAN Y, LU X, LU X Z, et al. Quantifying the seismic resilience of two tall buildings designed using Chinese and US codes [J]. Earthquake and Structures: An International Journal of Earthquake Engineering & Earthquake Effects on Structures, 2016, 11(6): 925 − 942.
    [13] 曾翔, 刘诗璇, 许镇, 等. 基于FEMA-P58方法的校园建筑地震经济损失预测案例分析[J]. 工程力学, 2016, 33(增刊 1): 113 − 118. doi: 10.6052/j.issn.1000-4750.2015.03.S050

    ZENG Xiang, LIU Shixuan, XU Zhen, et al. Earthquake loss prediction for campus buildings based on FEMA-P58 method: A case study [J]. Engineering Mechanics, 2016, 33(Suppl 1): 113 − 118. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.S050
    [14] WELSH-HUGGINS S J, LIEL A B. Evaluating multi-objective outcomes for hazard resilience and sustainability from enhanced building seismic design decisions [J]. Journal of Structural Engineering, 2018, 144(8): 04018108.1 − 04018108.14.
    [15] 孙楚津, 程庆乐, 曾翔, 等. 不同地震下的校园建筑震害与经济损失对比[J]. 工程力学, 2019, 36(增刊 1): 111 − 117. doi: 10.6052/j.issn.1000-4750.2018.04.S020

    SUN Chujin, CHENG Qingle, ZENG Xiang, et al. Comparison of seismic damage and economic loss of campus buildings under different earthquakes [J]. Engineering Mechanics, 2019, 36(Suppl 1): 111 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.S020
    [16] 卢嘉茗, 解琳琳, 李爱群, 等. 适用于区域RC框架结构隔震韧性提升的简化模型[J]. 工程力学, 2019, 36(8): 226 − 234, 247.

    LU Jiaming, XIE Linlin, LI Aiqun, et al. A simplified model for seismic resilience improvement of regional RC frame structures using seismic isolation [J]. Engineering Mechanics, 2019, 36(8): 226 − 234, 247. (in Chinese)
    [17] 杜轲, 燕登, 高嘉伟, 等. 基于FEMA P-58的RC框架结构抗震及减隔震性能评估[J]. 工程力学, 2020, 37(8): 134 − 147. doi: 10.6052/j.issn.1000-4750.2019.09.0551

    DU Ke, YAN Deng, GAO Jiawei, et al. Seismic performance assessment of RC frame structures with energy dissipation and isolation devices based on FEMA P-58 [J]. Engineering Mechanics, 2020, 37(8): 134 − 147. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0551
    [18] 卢啸. 钢筋混凝土框架核心筒结构地震韧性评价[J]. 建筑结构学报, 2021, 42(5): 55 − 63. doi: 10.14006/j.jzjgxb.2019.0406

    LU Xiao. Seismic resilience evaluation of reinforced concrete frame core tube structure [J]. Journal of Building Structures, 2021, 42(5): 55 − 63. (in Chinese) doi: 10.14006/j.jzjgxb.2019.0406
    [19] 解琳琳, 范子麦, 王心宇, 等. RC框架-剪力墙隔震结构地震韧性设计研究[J]. 工程力学, 2023, 40(10): 47 − 57. doi: 10.6052/j.issn.1000-4750.2021.11.0937

    XIE Linlin, FAN Zimai, WANG Xinyu, et al. Investigation on the resilience-based seismic design of isolated RC frame-shear wall structures [J]. Engineering Mechanics, 2023, 40(10): 47 − 57. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.11.0937
    [20] GB /T 38591−2020, 建筑抗震韧性评价标准 [S]. 北京: 中国标准出版社, 2020.

    GB/T 38591−2020, Standard for seismic resilience assessment of buildings [S]. Beijing: Standards Press of China, 2020. (in Chinese)
    [21] 潘鹏. 建筑抗震韧性评价系统 [EB/OL]. http://kangzhenhulian.com, 2021-11-08.

    PAN Peng. Program for seismic resilience assessment of buildings [EB/OL]. http://kangzhenhulian.com, 2021-11-08. ( in Chinese)
    [22] DEIERLEIN G G, KRAWINKLER H, CORNELL C A. A framework for performance-based earthquake engineering [C]// Christchurch, New Zealand: 2003 Pacific Conference on Earthquake Engineering, 2003.
    [23] T/CECS 392−2021, 建筑结构抗倒塌设计标准 [S]. 北京: 中国工程建设标准化协会, 2021.

    T/CECS 392−2021, Standard for anti-collapse design of building structures [S]. Beijing: China Association for Engineering Construction Standardization, 2021.(in Chinese)
    [24] T/CECS 906−2021, 建筑结构非线性分析技术标准 [S]. 北京: 中国工程建设标准化协会, 2021.

    T/CECS 906−2021, Technical standard for nonlinear analysis of building structures [S]. Beijing: China Association for Engineering Construction Standardization, 2021. (in Chinese)
    [25] DBJ/T 15−151−2019, 广东省建筑工程混凝土结构抗震性能设计规程 [S]. 北京: 中国城市出版社, 2019.

    DBJ/T 15−151−2019, Specification for Performance-based Seismic Design of Reinforced Concrete Building Structure [S]. Beijing: China City Press, 2019. (in Chinese)
    [26] YANG T Y, MOEHLE J, STOJADINOVIC B, et al. Seismic performance evaluation of facilities: Methodology and implementation [J]. Journal of Structural Engineering, 2009, 135(10): 1146 − 1154. doi: 10.1061/(ASCE)0733-9445(2009)135:10(1146)
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  90
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 修回日期:  2022-06-14
  • 网络出版日期:  2022-07-08
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回