RESEARCH ON SEISMIC RESILIENCE ASSESSMENT METHOD OF COMPLEX BUILDINGS BASED ON COMPONENT DAMAGE STATES
-
摘要: 传统建筑抗震韧性评价方法根据层间位移角判断结构构件损伤状态,适用于规则结构。为增强其对没有层概念的空间结构的适用性,提高楼层变形不均匀、扭转不规则结构的构件损伤状态判断的准确性,使之可以更灵活地适用于复杂建筑,该文采用基于材料应力-应变或构件转角的构件性能评价方法来判断构件损伤状态。以构件损伤状态为原始样本,通过对原始样本矩阵扩充产生大量构件损伤状态模拟样本,采用蒙特卡洛方法计算大量模拟样本的修复费用、修复时间及人员伤亡指标并进行概率分析得出韧性评价指标。为考虑地震动数目及非线性时程分析结果的离散性对抗震韧性评价指标的影响,评估韧性评价结果的可靠性,推导了韧性评价指标给定置信水平的置信区间的简化算法。通过一复杂框架剪力墙结构案例,验证了该文韧性评价方法的合理性与可行性。Abstract: Determining component damage states according to story drift ratio, the traditional seismic resilience assessment method of buildings is suitable for regular structures. In order to enhance its applicability to space structures without the concept of stories, improve the accuracy of determining component damage states of structures with uneven story deformation or irregular torsion, and make it more flexible for complex buildings, component performance evaluation methods based on material stress and strain or component rotation angle are adopted to determine component damage states. Taking the component damage states as the original samples, a large number of simulation samples of component damage states are generated by expanding the original sample matrix. Monte Carlo method is used to calculate the repair cost, repair time and casualties of the simulated samples, and the resilience assessment index is obtained by probability analysis. In order to consider the influences of the number of ground motions and the dispersion of nonlinear time-history analysis results on seismic resilience assessment index, and to evaluate the reliability of seismic resilience assessment results, a simplified confidence interval algorithm at a given confidence level of resilience assessment index is derived. Through a complex frame-shear wall structure case, the rationality and feasibility of the seismic resilience assessment method are verified.
-
表 1 统计特征对比
Table 1. Comparison of statistical characteristics
/(%) 时程分析 样本 对数均值 对数标准差 84分位值 4组人工模拟+7组
实际强震记录原始小样本 3.3608 0.4592 45.5 模拟大样本 3.3114 0.4184 41.6 11组人工模拟地震动 原始小样本 3.0711 0.193 26.1 模拟大样本 3.0193 0.1451 23.7 表 2 不同地震动数目的$ C $值和$ {C^S} $值
Table 2. The $ C $ and $ {C^S} $of different number of ground motions
参数 地震动数目 11 20 30 40 50 100 $ C $ 3.13 2.13 1.80 1.65 1.55 1.35 $ {C^S} $ $ S = 0.1 $ 1.12 1.08 1.06 1.05 1.04 1.03 $ S = 0.2 $ 1.26 1.16 1.13 1.10 1.09 1.06 $ S = 0.3 $ 1.41 1.25 1.19 1.16 1.14 1.09 $ S = 0.4 $ 1.58 1.35 1.27 1.22 1.19 1.13 $ S = 0.5 $ 1.77 1.46 1.34 1.28 1.25 1.16 $ S = 0.6 $ 1.98 1.57 1.42 1.35 1.30 1.20 -
[1] Wikipedia Contributors. List of tallest buildings in christchurch [EB], https://en.wikipedia.org/w/index.php?title=List_of_tallest_buildings_in_Christchurch&oldid=675499611, 10 August 2015, 23: 55. [2] Elnashai A S, Gencturk B, Kwon O S, et al. The Maule (Chile) earthquake of February 27, 2010: Consequence assessment and case studies (MAE Center Report No. 10-04) [R]. Urbana, Champaign, Ill: Department of Civil Engineering, University of Illinois, 2010. [3] FEMA. Seismic performance assessment of buildings: Volume 1-Methodology, Second Edition: FEMA P-58 [S]. Washington DC: Federal Emergency Management Agency, 2018. [4] FEMA. Performance assessment calculation tool [EB/OL]. http://femap58.atcouncil.org/pact, 2021-11-08. [5] ALMUFTI I, WILLFORD M. Redi rating system: Resilience-based earthquake design initiative for the next generation of buildings [R]. London: Arup, 2013. [6] U. S. Resiliency Council. Rating building performance in natural disasters [EB/OL]. https://www.usrc.org/usrc-rating-system, 2021-11-08. [7] HASIK V, CHHABRA J P S, WARN G P, et al. Review of approaches for integrating loss estimation and life cycle assessment to assess impacts of seismic building damage and repair [J]. Engineering Structures, 2018, 175: 123 − 137. doi: 10.1016/j.engstruct.2018.08.011 [8] MENNA C, FELICIONI L, NEGRO P, et al. Review of methods for the combined assessment of seismic resilience and energy efficiency towards sustainable retrofitting of existing European buildings [J]. Sustainable Cities and Society, 2022, 77: 103556. doi: 10.1016/j.scs.2021.103556 [9] SHADABFAR M, MAHSULI M, ZHANG Y, et al. Resilience-based design of infrastructure: Review of models, methodologies, and computational tools [J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering, 2022, 8(1): 03121004. doi: 10.1061/AJRUA6.0001184 [10] 翟长海, 刘文, 谢礼立. 城市抗震韧性评估研究进展[J]. 建筑结构学报, 2018, 39(9): 1 − 9. doi: 10.14006/j.jzjgxb.2018.09.001ZHAI Changhai, LIU Wen, XIE Lili. Progress of research on city seismic resilience evaluation [J]. Journal of Building Structures, 2018, 39(9): 1 − 9. (in Chinese) doi: 10.14006/j.jzjgxb.2018.09.001 [11] HUTT C M, ALMUFTI I, WILLFORD M, et al. Seismic loss and downtime assessment of existing tall steel-framed buildings and strategies for increased resilience [J]. Journal of Structural Engineering, 2016, 142(8): C4015005. doi: 10.1061/(ASCE)ST.1943-541X.0001314 [12] TIAN Y, LU X, LU X Z, et al. Quantifying the seismic resilience of two tall buildings designed using Chinese and US codes [J]. Earthquake and Structures: An International Journal of Earthquake Engineering & Earthquake Effects on Structures, 2016, 11(6): 925 − 942. [13] 曾翔, 刘诗璇, 许镇, 等. 基于FEMA-P58方法的校园建筑地震经济损失预测案例分析[J]. 工程力学, 2016, 33(增刊 1): 113 − 118. doi: 10.6052/j.issn.1000-4750.2015.03.S050ZENG Xiang, LIU Shixuan, XU Zhen, et al. Earthquake loss prediction for campus buildings based on FEMA-P58 method: A case study [J]. Engineering Mechanics, 2016, 33(Suppl 1): 113 − 118. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.03.S050 [14] WELSH-HUGGINS S J, LIEL A B. Evaluating multi-objective outcomes for hazard resilience and sustainability from enhanced building seismic design decisions [J]. Journal of Structural Engineering, 2018, 144(8): 04018108.1 − 04018108.14. [15] 孙楚津, 程庆乐, 曾翔, 等. 不同地震下的校园建筑震害与经济损失对比[J]. 工程力学, 2019, 36(增刊 1): 111 − 117. doi: 10.6052/j.issn.1000-4750.2018.04.S020SUN Chujin, CHENG Qingle, ZENG Xiang, et al. Comparison of seismic damage and economic loss of campus buildings under different earthquakes [J]. Engineering Mechanics, 2019, 36(Suppl 1): 111 − 117. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.S020 [16] 卢嘉茗, 解琳琳, 李爱群, 等. 适用于区域RC框架结构隔震韧性提升的简化模型[J]. 工程力学, 2019, 36(8): 226 − 234, 247.LU Jiaming, XIE Linlin, LI Aiqun, et al. A simplified model for seismic resilience improvement of regional RC frame structures using seismic isolation [J]. Engineering Mechanics, 2019, 36(8): 226 − 234, 247. (in Chinese) [17] 杜轲, 燕登, 高嘉伟, 等. 基于FEMA P-58的RC框架结构抗震及减隔震性能评估[J]. 工程力学, 2020, 37(8): 134 − 147. doi: 10.6052/j.issn.1000-4750.2019.09.0551DU Ke, YAN Deng, GAO Jiawei, et al. Seismic performance assessment of RC frame structures with energy dissipation and isolation devices based on FEMA P-58 [J]. Engineering Mechanics, 2020, 37(8): 134 − 147. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0551 [18] 卢啸. 钢筋混凝土框架核心筒结构地震韧性评价[J]. 建筑结构学报, 2021, 42(5): 55 − 63. doi: 10.14006/j.jzjgxb.2019.0406LU Xiao. Seismic resilience evaluation of reinforced concrete frame core tube structure [J]. Journal of Building Structures, 2021, 42(5): 55 − 63. (in Chinese) doi: 10.14006/j.jzjgxb.2019.0406 [19] 解琳琳, 范子麦, 王心宇, 等. RC框架-剪力墙隔震结构地震韧性设计研究[J]. 工程力学, 2023, 40(10): 47 − 57. doi: 10.6052/j.issn.1000-4750.2021.11.0937XIE Linlin, FAN Zimai, WANG Xinyu, et al. Investigation on the resilience-based seismic design of isolated RC frame-shear wall structures [J]. Engineering Mechanics, 2023, 40(10): 47 − 57. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.11.0937 [20] GB /T 38591−2020, 建筑抗震韧性评价标准 [S]. 北京: 中国标准出版社, 2020.GB/T 38591−2020, Standard for seismic resilience assessment of buildings [S]. Beijing: Standards Press of China, 2020. (in Chinese) [21] 潘鹏. 建筑抗震韧性评价系统 [EB/OL]. http://kangzhenhulian.com, 2021-11-08.PAN Peng. Program for seismic resilience assessment of buildings [EB/OL]. http://kangzhenhulian.com, 2021-11-08. ( in Chinese) [22] DEIERLEIN G G, KRAWINKLER H, CORNELL C A. A framework for performance-based earthquake engineering [C]// Christchurch, New Zealand: 2003 Pacific Conference on Earthquake Engineering, 2003. [23] T/CECS 392−2021, 建筑结构抗倒塌设计标准 [S]. 北京: 中国工程建设标准化协会, 2021.T/CECS 392−2021, Standard for anti-collapse design of building structures [S]. Beijing: China Association for Engineering Construction Standardization, 2021.(in Chinese) [24] T/CECS 906−2021, 建筑结构非线性分析技术标准 [S]. 北京: 中国工程建设标准化协会, 2021.T/CECS 906−2021, Technical standard for nonlinear analysis of building structures [S]. Beijing: China Association for Engineering Construction Standardization, 2021. (in Chinese) [25] DBJ/T 15−151−2019, 广东省建筑工程混凝土结构抗震性能设计规程 [S]. 北京: 中国城市出版社, 2019.DBJ/T 15−151−2019, Specification for Performance-based Seismic Design of Reinforced Concrete Building Structure [S]. Beijing: China City Press, 2019. (in Chinese) [26] YANG T Y, MOEHLE J, STOJADINOVIC B, et al. Seismic performance evaluation of facilities: Methodology and implementation [J]. Journal of Structural Engineering, 2009, 135(10): 1146 − 1154. doi: 10.1061/(ASCE)0733-9445(2009)135:10(1146) -