RESEARCH ON DAMPING FORCE MODEL OF SEPARATED SHOCK ABSORBER BASED ON RAMBERG-OSGOOD MODEL
-
摘要: 如何更好地模拟分离式减震榫在地震过程中的滞回性能,是分离式减震榫减震设计中的重要组成部分。针对从材料层次描述分离式减震榫在往复荷载作用下力学性能的理论研究相对不足的问题,提出一种基于Ramberg-Osgood模型推导分离式减震榫骨架曲线的计算方法,并基于该方法提出一种适用于工程计算的双线性本构的简化算法。通过ABAQUS有限元软件对比Ramberg-Osgood模型,Chaboche本构和理想弹塑性本构下分离式减震榫骨架曲线的差异,并以一座通用的两跨32 m双线铁路预应力混凝土简支梁桥为背景,分析双线性本构简化算法在桥梁抗震设计中的适用性。结果表明:基于Ramberg-Osgood模型推导的分离式减震榫的骨架曲线,能够较好拟合Chaboche本构下的骨架曲线;在近断层脉冲地震动作用下通过双线性本构计算得到的支座位移峰值和墩底弯矩峰值,与Chaboche本构下得到的计算结果的平均误差分别为−2.67%和6.56%。该文提出的双线性模型的简化方法用于桥梁工程抗震设计是安全且合理的。
-
关键词:
- 分离式减震榫 /
- Ramberg-Osgood模型 /
- Chaboche本构 /
- 双线性本构 /
- 有限元分析 /
- 简支梁桥
Abstract: How to better simulate the hysteretic performance of separated shock absorber under earthquake is an important part of the seismic design of separated shock absorber. Because theoretical research on describing the mechanical properties of separated shock absorber from material level is relatively insufficient, a calculation method based on the Ramberg-Osgood model to derive the skeleton curve of separated shock absorber is proposed. Based on this method, a simplified algorithm for deriving bilinear model is also proposed. The difference in skeleton curve of separated shock absorber under the bilinear model, Chaboche model and ideal elastoplastic constitutive model is compared using ABAQUS. The applicability of the simplified algorithm in seismic design of bridge engineering is analyzed using an example of a 32 m railway simply-supported beam bridge. The results show that the skeleton curve of separated shock absorber derived based on the Ramberg-Osgood model can better fit that of the Chaboche model. Under near-fault earthquake with velocity-impulse effect, the average errors of bearing displacement and pier bottom bending moment calculated with the bilinear model and Chaboche model are −3.6% and 6.5%, respectively. The proposed simplified algorithm of bilinear model is safe and reasonable for the seismic design in bridge engineering. -
表 1 Chaboche本构参数标定表
Table 1. Parameters of Chaboche constitutive model
参数 $\sigma {{\text{}}_0}{\text{/MPa}}$ ${Q_\infty }{\text{/MPa}}$ $b$ ${C_1}{\text{/MPa}}$ ${\gamma _1}$ ${C_2}{\text{/MPa}}$ ${\gamma _2}$ ${C_3}{\text{/MPa}}$ ${\gamma _3}$ ${C_4}{\text{/MPa}}$ ${\gamma _4}$ 数值 165 53 5 62105 1611 4986 413 1978 95 701 3 表 2 输入地震记录特征
Table 2. Characteristics of selected earthquake records
No. 地震事件 记录站台 PGA/g 震级 断层距/km 1 Chi-Chi_ Taiwan TCU049 0.244 7.62 3.76 2 Loma Prieta Gilroy - Gavilan Coll 0.359 6.93 9.19 3 Imperial Valley-06 El Centro Array #5 0.528 6.53 1.76 4 Imperial Valley-06 El Centro Array #6 0.447 6.53 0.00 5 Tabas_ Iran Tabas 0.416 7.35 1.79 6 L'Aquila_ Italy V. Aterno - Centro Valle 0.664 6.30 0.00 7 Kocaeli_ Turkey Gebze 0.261 7.51 7.57 表 3 P2支座位移时程最大值比较
Table 3. Comparison of peak displacement of P2 bearing
本构模型 1 2 3 4 5 6 7 平均值 Chaboche
本构/mm138.20 45.40 74.70 153.50 84.50 64.20 116.90 — 双线性
本构/mm121.40 44.20 73.20 122.70 79.07 77.30 121.80 — Difference1/(%) −12.16 −2.64 −2.01 −20.07 −6.43 20.40 4.19 −2.67 理想弹塑性
本构/mm172.30 48.90 83.50 200.00 89.20 82.00 139.30 — Difference2/(%) 24.67 7.71 11.78 30.29 5.56 27.73 19.16 18.13 表 4 P2墩底弯矩峰值比较
Table 4. Comparison of peak bending moment at pier bottom of P2
本构模型 1 2 3 4 5 6 7 平均值 Chaboche
本构/(MN·m)25.0 18.10 19.20 24.30 19.80 19.40 24.1 — 双线性
本构/(MN·m)26.8 21.30 22.90 25.30 21.80 20.00 24.2 — Difference1/(%) 7.2 12.15 8.85 4.12 10.10 3.10 0.4 6.56 理想弹塑性
本构/(MN·m)23.2 16.50 18.30 23.90 18.10 17.50 21.2 — Difference2/(%) −7.2 −8.84 −4.69 −1.65 −8.59 −9.79 −12.0 −7.54 -
[1] 李爱丽, 高日. 减震榫―活动支座应用于高铁桥梁的减震性能研究[J]. 桥梁建设, 2018, 48(1): 54 − 59. doi: 10.3969/j.issn.1003-4722.2018.01.010LI Aili, GAO Ri. Study of seismic mitigation behavior of shock absorbers and sliding bearings applied to high-speed railway bridges [J]. Bridge Construction, 2018, 48(1): 54 − 59. (in Chinese) doi: 10.3969/j.issn.1003-4722.2018.01.010 [2] 李照广. 铁路桥梁减震榫和榫形防落梁装置的低周疲劳研究 [D]. 北京: 北京交通大学, 2020.LI Zhaoguang. The low cycle fatigue of the shock absorber and steel restrainer bar for railway bridge [D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese) [3] LIU C, GAO R, GUO B. Seismic design method analyses of an innovative steel damping bearing for railway bridges [J]. Engineering Structures, 2018, 167: 518 − 532. [4] LI Z, GAO R, JIA W. Design and experimental study on shock-absorbing steel bar with limit function for bridges [J]. Shock and Vibration, 2019, 2019(1): 1 − 10. [5] LIU C, GAO R. Design method for steel restrainer bars on railway bridges subjected to spatially varying earthquakes [J]. Engineering Structures, 2018, 159: 198 − 212. [6] 徐龙河, 张焱, 肖水晶. 底部铰支自复位钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2020, 37(6): 122 − 130. doi: 10.6052/j.issn.1000-4750.2019.04.0235XU Longhe, ZHANG Yan, XIAO Shuijing. Design and behavior study on bottom hinged self-centering reinforced concrete shear wall [J]. Engineering Mechanics, 2020, 37(6): 122 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0235 [7] 石岩, 钟正午, 秦洪果, 等. 装配铅挤压阻尼器的摇摆-自复位双柱墩抗震性能及设计方法[J]. 工程力学, 2021, 38(8): 166 − 177, 203. doi: 10.6052/j.issn.1000-4750.2020.08.0575SHI Yan, ZHONG Zhengwu, QIN Hongguo, et al. Seismic performance and corresponding design method of rocking self-centering bridge bents equipped with lead-extrusion dampers [J]. Engineering Mechanics, 2021, 38(8): 166 − 177, 203. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0575 [8] SUI W, LI H, ZHANG Q, et al. The mechanical properties of a new corrugated steel plate damper and its application in a steel arch bridge [J]. KSCE Journal of Civil Engineering, 2019, 24(3): 1 − 13. [9] 骆晶, 施刚, 毛灵涛, 等. 双相型不锈钢S22053循环本构关系研究[J]. 工程力学, 2021, 38(9): 171 − 181. doi: 10.6052/j.issn.1000-4750.2020.09.0659LUO Jing, SHI Gang, MAO Lingtao, et al. Constitutive relation of duplex stainless steel S22053 under cyclic loading [J]. Engineering Mechanics, 2021, 38(9): 171 − 181. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0659 [10] ZHANG Q, JIN M, LI Q, et al. The hysteretic curve characteristics on Q235 steel under asymmetrical cyclic loading [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(9): 357 − 364 . [11] VOA B, YG A, DM A, et al. New formulation of nonlinear kinematic hardening model, Part II: Cyclic hardening/softening and ratcheting-Science direct [J]. International Journal of Plasticity, 2019, 122: 244 − 267. doi: 10.1016/j.ijplas.2019.07.005 [12] 李爱丽. 分离式减震榫—活动支座简支梁桥的抗震性能研究 [D]. 北京: 北京交通大学, 2018.LI Aili. Research on seismic performance of the simply supported girder bridge with separated shock absorber-movable support [D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese) [13] RAMBERG W, OSGOOD W R. Description of stress-strain curves by three parameters [R]. Washington D C: University of Washington. National Advisory Committee for Aeronautics, 1943: 56 − 58 . [14] ISHIKAWA H. A theoretical method for solving an elasto-plastic bending problem [J]. Bulletin of JSME, 1972, 15(86): 928 − 940. doi: 10.1299/jsme1958.15.928 [15] SZULADZINSKI G. Bending of beams with nonlinear material characteristics [J]. Journal of Mechanical Design, 1980, 102(4): 776 − 780. [16] LANZAGORTA J L. 3-point bending of bars and rods made of materials obeying a Ramberg-Osgood criterion [J]. World Journal of Mechanics, 2011, 1(3): 71 − 77. doi: 10.4236/wjm.2011.13010 [17] 李冀龙, 欧进萍. X形和三角形钢板阻尼器的阻尼力模型(Ⅱ)―基于R-O本构关系[J]. 世界地震工程, 2004, 20(2): 129 − 133. doi: 10.3969/j.issn.1007-6069.2004.02.026LI Jilong, OU Jinping. Damping force hysteresis loop models for X type and triangle mild steel dampers(Ⅱ)-based on Ramberg-Osgood constitutive model [J]. World Earthquake Engineering, 2004, 20(2): 129 − 133. (in Chinese) doi: 10.3969/j.issn.1007-6069.2004.02.026 [18] BQA B, XL A, YL B, et al. Experimental study and parameter determination of cyclic constitutive model for bridge steels [J]. Journal of Constructional Steel Research, 2021, 183: 106738. [19] 石永久, 王佼姣, 王元清, 等. 循环荷载下低屈服点钢材LYP225的力学性能[J]. 东南大学学报(自然科学版), 2014, 44(6): 1260 − 1265.SHI Yongjiu, WANG Jiaojiao, WANG Yuanqin, et al. Mechanical performance of low-yield-point steel LYP225 under cyclic loading [J]. Journal of Southeast University (Natural Science Edition), 2014, 44(6): 1260 − 1265. (in Chinese) [20] 胡婉颖, 余玉洁, 田沛丰, 等. 高温后高强Q690钢材循环加载试验及本构模型研究[J]. 工程力学, 2022, 39(3): 84 − 95, 157. doi: 10.6052/j.issn.1000-4750.2021.01.0024HU Wanying, YU Yujie, TIAN Peifeng, et al. Cyclic loading test and consitutive model of postfire high strength Q690 steel [J]. Engineering Mechanics, 2022, 39(3): 84 − 95, 157. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0024 [21] T/CECS 547, 建筑消能减震加固技术规程 [S]. 中国工程建设标准化协会, 2018.T/CECS 547, Technical specification for seismic energy dissipation of buildings [S]. China Association for Engineering Construction Standardization, 2018. (in Chinese) [22] 董俊. 高烈度地震区铁路32m预应力混凝土简支梁摩擦摆支座减震性能研究[J]. 铁道标准设计, 2020(增刊 1): 63 − 68.DONG Jun. Study on vibration mitigation property of railway 32 m prestressed concrete simply-supported girder with friction pendulum bearings in highly seismic area [J]. Railway Standard Design, 2020(Suppl 1): 63 − 68. (in Chinese) [23] LOH C H, TSAY C Y. Responses of the earthquake engineering research community to the Chi-Chi (Taiwan) earthquake [J]. Earthquake Spectra, 2001, 17(4): 635 − 656. [24] LIN C CJ, HUNG H H, LIU K Y, et al. Reconnaissance observation on bridge damage caused by the 2008 Wenchuan (China) earthquake [J]. Earthquake Spectra, 2010, 26(4): 1057 − 1083. [25] SCHANACK F, VALDEBENITO G, ALVIAL J. Seismic damage to bridges during the 27 February 2010 magnitude 8.8 Chile earthquake [J]. Earthquake Spectra, 2012, 28(1): 301 − 315. [26] WANG Z, LEE G C. A comparative study of bridge damage due to the WenChuan, Northridge, Loma Prieta and San Fernando earthquakes [J]. Earthquake Engineering And Engineering Vibration, 2009, 8(2): 251 − 261. [27] PAPATHANASIOU S M, TSOPELAS P, PRAPA E, et al. Infulence of soil-structure interaction modeling on the response of seismically isolated bridges [R]. Athens, GRC: 23rd International Congress on Sound and Vibration (ICSV) , 2016. [28] 魏标, 刘义伟, 蒋丽忠, 等. 地震作用下双曲面球型减隔震支座在铁路简支梁桥中的动力行为[J]. 土木工程学报, 2019, 52(6): 110 − 118.WEI Biao, LIU Yiwen, JIANG Lizhong, et al. Dynamic behavior of double spherical isolation bearing in simply-supported railway bridges under earthquakes [J]. China Civil Engineering Journal, 2019, 52(6): 110 − 118. (in Chinese) [29] ABAQUS, Analysis user’s manual I_V [M]. Version 6.10, USA: ABAQUS Inc, Dassault Systems, 2010. [30] GB 50111−2006, 铁路工程抗震设计规范 [M]. 北京: 中国计划出版社, 2006.GB 50111−2006, Code for seismic design of railway engineering [M]. Beijing: China Planning Press, 2006. (in Chinese) [31] PEER. PEER ground motion database [M]. Berkeley, CA: Pacific Earthquake Engineering Research Center, 2018. -