留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分离式减震榫的阻尼力模型研究—基于Ramberg-Osgood模型

魏标 闵浩峥 汪伟浩 李姗姗

魏标, 闵浩峥, 汪伟浩, 李姗姗. 分离式减震榫的阻尼力模型研究—基于Ramberg-Osgood模型[J]. 工程力学, 2023, 40(11): 81-89. doi: 10.6052/j.issn.1000-4750.2022.01.0097
引用本文: 魏标, 闵浩峥, 汪伟浩, 李姗姗. 分离式减震榫的阻尼力模型研究—基于Ramberg-Osgood模型[J]. 工程力学, 2023, 40(11): 81-89. doi: 10.6052/j.issn.1000-4750.2022.01.0097
WEI Biao, MIN Hao-zheng, WANG Wei-hao, LI Shan-shan. RESEARCH ON DAMPING FORCE MODEL OF SEPARATED SHOCK ABSORBER BASED ON RAMBERG-OSGOOD MODEL[J]. Engineering Mechanics, 2023, 40(11): 81-89. doi: 10.6052/j.issn.1000-4750.2022.01.0097
Citation: WEI Biao, MIN Hao-zheng, WANG Wei-hao, LI Shan-shan. RESEARCH ON DAMPING FORCE MODEL OF SEPARATED SHOCK ABSORBER BASED ON RAMBERG-OSGOOD MODEL[J]. Engineering Mechanics, 2023, 40(11): 81-89. doi: 10.6052/j.issn.1000-4750.2022.01.0097

分离式减震榫的阻尼力模型研究—基于Ramberg-Osgood模型

doi: 10.6052/j.issn.1000-4750.2022.01.0097
基金项目: 国家自然科学基金项目(51778635,U1934207,51978667);湖南创新型省份建设专项项目(2019RS3009);中南大学创新驱动项目(20200017050004)
详细信息
    作者简介:

    魏 标(1982−),男,江苏人,教授,博士,博导,主要从事桥梁抗震与减隔震方面的研究(E-mail: weibiao@csu.edu.cn)

    汪伟浩(1997−),男,湖南人,硕士生,主要从事桥梁设计与桥梁结构抗震方面的研究(E-mail: wangweihao@ghdi.cn)

    李姗姗(1983−),女,江苏人,博士生,主要从事结构抗震理论方面的研究(E-mail: shanshanli@csu.edu.cn)

    通讯作者:

    闵浩峥 (1998−),男,湖南人,硕士生,主要从事有限元仿真与金属阻尼器理论方面的研究(E-mail: 1289108320@qq.com)

  • 中图分类号: TU352.1

RESEARCH ON DAMPING FORCE MODEL OF SEPARATED SHOCK ABSORBER BASED ON RAMBERG-OSGOOD MODEL

  • 摘要: 如何更好地模拟分离式减震榫在地震过程中的滞回性能,是分离式减震榫减震设计中的重要组成部分。针对从材料层次描述分离式减震榫在往复荷载作用下力学性能的理论研究相对不足的问题,提出一种基于Ramberg-Osgood模型推导分离式减震榫骨架曲线的计算方法,并基于该方法提出一种适用于工程计算的双线性本构的简化算法。通过ABAQUS有限元软件对比Ramberg-Osgood模型,Chaboche本构和理想弹塑性本构下分离式减震榫骨架曲线的差异,并以一座通用的两跨32 m双线铁路预应力混凝土简支梁桥为背景,分析双线性本构简化算法在桥梁抗震设计中的适用性。结果表明:基于Ramberg-Osgood模型推导的分离式减震榫的骨架曲线,能够较好拟合Chaboche本构下的骨架曲线;在近断层脉冲地震动作用下通过双线性本构计算得到的支座位移峰值和墩底弯矩峰值,与Chaboche本构下得到的计算结果的平均误差分别为−2.67%和6.56%。该文提出的双线性模型的简化方法用于桥梁工程抗震设计是安全且合理的。
  • 图  1  分离式减震榫示意图

    Figure  1.  Diagram of separated shock absorber

    图  2  骨架曲线计算流程图

    Figure  2.  Flow chart of skeleton curve calculation

    图  3  理论滞回模型

    Figure  3.  Theoretical hysteretic model

    图  4  滞回模型简化流程图

    Figure  4.  Simplified flow chart of hysteresis model

    图  5  分离式减震榫有限元模型

    Figure  5.  Finite element model of separated shock absorber

    图  6  应力-应变曲线对比图

    Figure  6.  Comparison of stress-strain curves

    图  7  加载制度

    Figure  7.  Loading scheme

    图  8  骨架曲线对比图

    Figure  8.  Comparison of skeleton curves

    图  9  滞回曲线对比图

    Figure  9.  Comparison of hysteretic curves

    图  10  主梁横截面 /mm

    Figure  10.  Cross-section of main girder

    图  11  桥墩构造 /mm

    Figure  11.  Pier structure

    图  12  混凝土拉压损伤本构 /m

    Figure  12.  Damage constitutive relationship of concrete

    图  13  铁路简支梁桥有限元模型

    Figure  13.  Finite element model of simply-supported railway bridge

    图  14  所选地震记录动力放大系数曲线

    Figure  14.  Dynamic amplification factor curve of selected earthquake records

    图  15  支座位移时程对比

    Figure  15.  Comparison of bearing displacement time history

    图  16  分离式减震榫滞回曲线对比图

    Figure  16.  Comparison of hysteretic curves of separated shock absorber

    图  17  墩底弯矩时程曲线对比图

    Figure  17.  Comparison of pier bottom bending moment time history

    表  1  Chaboche本构参数标定表

    Table  1.   Parameters of Chaboche constitutive model

    参数$\sigma {{\text{}}_0}{\text{/MPa}}$${Q_\infty }{\text{/MPa}}$$b$${C_1}{\text{/MPa}}$${\gamma _1}$${C_2}{\text{/MPa}}$${\gamma _2}$${C_3}{\text{/MPa}}$${\gamma _3}$${C_4}{\text{/MPa}}$${\gamma _4}$
    数值16553562105161149864131978957013
    下载: 导出CSV

    表  2  输入地震记录特征

    Table  2.   Characteristics of selected earthquake records

    No.地震事件记录站台PGA/g震级断层距/km
    1Chi-Chi_ TaiwanTCU0490.2447.623.76
    2Loma PrietaGilroy - Gavilan Coll0.3596.939.19
    3Imperial Valley-06El Centro Array #50.5286.531.76
    4Imperial Valley-06El Centro Array #60.4476.530.00
    5Tabas_ IranTabas0.4167.351.79
    6L'Aquila_ ItalyV. Aterno - Centro Valle0.6646.300.00
    7Kocaeli_ TurkeyGebze0.2617.517.57
    下载: 导出CSV

    表  3  P2支座位移时程最大值比较

    Table  3.   Comparison of peak displacement of P2 bearing

    本构模型1234567平均值
    Chaboche
    本构/mm
    138.20 45.40 74.70 153.50 84.50 64.20 116.90
    双线性
    本构/mm
    121.40 44.20 73.20 122.70 79.07 77.30 121.80
    Difference1/(%) −12.16 −2.64 −2.01 −20.07 −6.43 20.40 4.19 −2.67
    理想弹塑性
    本构/mm
    172.30 48.90 83.50 200.00 89.20 82.00 139.30
    Difference2/(%) 24.67 7.71 11.78 30.29 5.56 27.73 19.16 18.13
    下载: 导出CSV

    表  4  P2墩底弯矩峰值比较

    Table  4.   Comparison of peak bending moment at pier bottom of P2

    本构模型1234567平均值
    Chaboche
    本构/(MN·m)
    25.0 18.10 19.20 24.30 19.80 19.40 24.1
    双线性
    本构/(MN·m)
    26.8 21.30 22.90 25.30 21.80 20.00 24.2
    Difference1/(%) 7.2 12.15 8.85 4.12 10.10 3.10 0.4 6.56
    理想弹塑性
    本构/(MN·m)
    23.2 16.50 18.30 23.90 18.10 17.50 21.2
    Difference2/(%) −7.2 −8.84 −4.69 −1.65 −8.59 −9.79 −12.0 −7.54
    下载: 导出CSV
  • [1] 李爱丽, 高日. 减震榫―活动支座应用于高铁桥梁的减震性能研究[J]. 桥梁建设, 2018, 48(1): 54 − 59. doi: 10.3969/j.issn.1003-4722.2018.01.010

    LI Aili, GAO Ri. Study of seismic mitigation behavior of shock absorbers and sliding bearings applied to high-speed railway bridges [J]. Bridge Construction, 2018, 48(1): 54 − 59. (in Chinese) doi: 10.3969/j.issn.1003-4722.2018.01.010
    [2] 李照广. 铁路桥梁减震榫和榫形防落梁装置的低周疲劳研究 [D]. 北京: 北京交通大学, 2020.

    LI Zhaoguang. The low cycle fatigue of the shock absorber and steel restrainer bar for railway bridge [D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)
    [3] LIU C, GAO R, GUO B. Seismic design method analyses of an innovative steel damping bearing for railway bridges [J]. Engineering Structures, 2018, 167: 518 − 532.
    [4] LI Z, GAO R, JIA W. Design and experimental study on shock-absorbing steel bar with limit function for bridges [J]. Shock and Vibration, 2019, 2019(1): 1 − 10.
    [5] LIU C, GAO R. Design method for steel restrainer bars on railway bridges subjected to spatially varying earthquakes [J]. Engineering Structures, 2018, 159: 198 − 212.
    [6] 徐龙河, 张焱, 肖水晶. 底部铰支自复位钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2020, 37(6): 122 − 130. doi: 10.6052/j.issn.1000-4750.2019.04.0235

    XU Longhe, ZHANG Yan, XIAO Shuijing. Design and behavior study on bottom hinged self-centering reinforced concrete shear wall [J]. Engineering Mechanics, 2020, 37(6): 122 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0235
    [7] 石岩, 钟正午, 秦洪果, 等. 装配铅挤压阻尼器的摇摆-自复位双柱墩抗震性能及设计方法[J]. 工程力学, 2021, 38(8): 166 − 177, 203. doi: 10.6052/j.issn.1000-4750.2020.08.0575

    SHI Yan, ZHONG Zhengwu, QIN Hongguo, et al. Seismic performance and corresponding design method of rocking self-centering bridge bents equipped with lead-extrusion dampers [J]. Engineering Mechanics, 2021, 38(8): 166 − 177, 203. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0575
    [8] SUI W, LI H, ZHANG Q, et al. The mechanical properties of a new corrugated steel plate damper and its application in a steel arch bridge [J]. KSCE Journal of Civil Engineering, 2019, 24(3): 1 − 13.
    [9] 骆晶, 施刚, 毛灵涛, 等. 双相型不锈钢S22053循环本构关系研究[J]. 工程力学, 2021, 38(9): 171 − 181. doi: 10.6052/j.issn.1000-4750.2020.09.0659

    LUO Jing, SHI Gang, MAO Lingtao, et al. Constitutive relation of duplex stainless steel S22053 under cyclic loading [J]. Engineering Mechanics, 2021, 38(9): 171 − 181. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0659
    [10] ZHANG Q, JIN M, LI Q, et al. The hysteretic curve characteristics on Q235 steel under asymmetrical cyclic loading [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(9): 357 − 364 .
    [11] VOA B, YG A, DM A, et al. New formulation of nonlinear kinematic hardening model, Part II: Cyclic hardening/softening and ratcheting-Science direct [J]. International Journal of Plasticity, 2019, 122: 244 − 267. doi: 10.1016/j.ijplas.2019.07.005
    [12] 李爱丽. 分离式减震榫—活动支座简支梁桥的抗震性能研究 [D]. 北京: 北京交通大学, 2018.

    LI Aili. Research on seismic performance of the simply supported girder bridge with separated shock absorber-movable support [D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
    [13] RAMBERG W, OSGOOD W R. Description of stress-strain curves by three parameters [R]. Washington D C: University of Washington. National Advisory Committee for Aeronautics, 1943: 56 − 58 .
    [14] ISHIKAWA H. A theoretical method for solving an elasto-plastic bending problem [J]. Bulletin of JSME, 1972, 15(86): 928 − 940. doi: 10.1299/jsme1958.15.928
    [15] SZULADZINSKI G. Bending of beams with nonlinear material characteristics [J]. Journal of Mechanical Design, 1980, 102(4): 776 − 780.
    [16] LANZAGORTA J L. 3-point bending of bars and rods made of materials obeying a Ramberg-Osgood criterion [J]. World Journal of Mechanics, 2011, 1(3): 71 − 77. doi: 10.4236/wjm.2011.13010
    [17] 李冀龙, 欧进萍. X形和三角形钢板阻尼器的阻尼力模型(Ⅱ)―基于R-O本构关系[J]. 世界地震工程, 2004, 20(2): 129 − 133. doi: 10.3969/j.issn.1007-6069.2004.02.026

    LI Jilong, OU Jinping. Damping force hysteresis loop models for X type and triangle mild steel dampers(Ⅱ)-based on Ramberg-Osgood constitutive model [J]. World Earthquake Engineering, 2004, 20(2): 129 − 133. (in Chinese) doi: 10.3969/j.issn.1007-6069.2004.02.026
    [18] BQA B, XL A, YL B, et al. Experimental study and parameter determination of cyclic constitutive model for bridge steels [J]. Journal of Constructional Steel Research, 2021, 183: 106738.
    [19] 石永久, 王佼姣, 王元清, 等. 循环荷载下低屈服点钢材LYP225的力学性能[J]. 东南大学学报(自然科学版), 2014, 44(6): 1260 − 1265.

    SHI Yongjiu, WANG Jiaojiao, WANG Yuanqin, et al. Mechanical performance of low-yield-point steel LYP225 under cyclic loading [J]. Journal of Southeast University (Natural Science Edition), 2014, 44(6): 1260 − 1265. (in Chinese)
    [20] 胡婉颖, 余玉洁, 田沛丰, 等. 高温后高强Q690钢材循环加载试验及本构模型研究[J]. 工程力学, 2022, 39(3): 84 − 95, 157. doi: 10.6052/j.issn.1000-4750.2021.01.0024

    HU Wanying, YU Yujie, TIAN Peifeng, et al. Cyclic loading test and consitutive model of postfire high strength Q690 steel [J]. Engineering Mechanics, 2022, 39(3): 84 − 95, 157. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0024
    [21] T/CECS 547, 建筑消能减震加固技术规程 [S]. 中国工程建设标准化协会, 2018.

    T/CECS 547, Technical specification for seismic energy dissipation of buildings [S]. China Association for Engineering Construction Standardization, 2018. (in Chinese)
    [22] 董俊. 高烈度地震区铁路32m预应力混凝土简支梁摩擦摆支座减震性能研究[J]. 铁道标准设计, 2020(增刊 1): 63 − 68.

    DONG Jun. Study on vibration mitigation property of railway 32 m prestressed concrete simply-supported girder with friction pendulum bearings in highly seismic area [J]. Railway Standard Design, 2020(Suppl 1): 63 − 68. (in Chinese)
    [23] LOH C H, TSAY C Y. Responses of the earthquake engineering research community to the Chi-Chi (Taiwan) earthquake [J]. Earthquake Spectra, 2001, 17(4): 635 − 656.
    [24] LIN C CJ, HUNG H H, LIU K Y, et al. Reconnaissance observation on bridge damage caused by the 2008 Wenchuan (China) earthquake [J]. Earthquake Spectra, 2010, 26(4): 1057 − 1083.
    [25] SCHANACK F, VALDEBENITO G, ALVIAL J. Seismic damage to bridges during the 27 February 2010 magnitude 8.8 Chile earthquake [J]. Earthquake Spectra, 2012, 28(1): 301 − 315.
    [26] WANG Z, LEE G C. A comparative study of bridge damage due to the WenChuan, Northridge, Loma Prieta and San Fernando earthquakes [J]. Earthquake Engineering And Engineering Vibration, 2009, 8(2): 251 − 261.
    [27] PAPATHANASIOU S M, TSOPELAS P, PRAPA E, et al. Infulence of soil-structure interaction modeling on the response of seismically isolated bridges [R]. Athens, GRC: 23rd International Congress on Sound and Vibration (ICSV) , 2016.
    [28] 魏标, 刘义伟, 蒋丽忠, 等. 地震作用下双曲面球型减隔震支座在铁路简支梁桥中的动力行为[J]. 土木工程学报, 2019, 52(6): 110 − 118.

    WEI Biao, LIU Yiwen, JIANG Lizhong, et al. Dynamic behavior of double spherical isolation bearing in simply-supported railway bridges under earthquakes [J]. China Civil Engineering Journal, 2019, 52(6): 110 − 118. (in Chinese)
    [29] ABAQUS, Analysis user’s manual I_V [M]. Version 6.10, USA: ABAQUS Inc, Dassault Systems, 2010.
    [30] GB 50111−2006, 铁路工程抗震设计规范 [M]. 北京: 中国计划出版社, 2006.

    GB 50111−2006, Code for seismic design of railway engineering [M]. Beijing: China Planning Press, 2006. (in Chinese)
    [31] PEER. PEER ground motion database [M]. Berkeley, CA: Pacific Earthquake Engineering Research Center, 2018.
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  486
  • HTML全文浏览量:  94
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-20
  • 修回日期:  2022-04-09
  • 网络出版日期:  2022-04-23
  • 刊出日期:  2023-11-25

目录

    /

    返回文章
    返回