留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用端板螺栓连接的可更换耗能梁抗震及可更换性能试验研究

门进杰 张智勇 熊礼全 王家琛 范栋鑫

门进杰, 张智勇, 熊礼全, 王家琛, 范栋鑫. 采用端板螺栓连接的可更换耗能梁抗震及可更换性能试验研究[J]. 工程力学, 2023, 40(9): 130-141. doi: 10.6052/j.issn.1000-4750.2022.01.0040
引用本文: 门进杰, 张智勇, 熊礼全, 王家琛, 范栋鑫. 采用端板螺栓连接的可更换耗能梁抗震及可更换性能试验研究[J]. 工程力学, 2023, 40(9): 130-141. doi: 10.6052/j.issn.1000-4750.2022.01.0040
MEN Jin-jie, ZHANG Zhi-yong, XIONG Li-quan, WANG Jia-chen, FAN Dong-xin. EXPERIMENTAL STUDY ON SEISMIC AND REPLACEABLE PERFORMANCE OF REPLACEABLE ENERGY DISSIPATION BEAMS WITH BOLTED END PLATES[J]. Engineering Mechanics, 2023, 40(9): 130-141. doi: 10.6052/j.issn.1000-4750.2022.01.0040
Citation: MEN Jin-jie, ZHANG Zhi-yong, XIONG Li-quan, WANG Jia-chen, FAN Dong-xin. EXPERIMENTAL STUDY ON SEISMIC AND REPLACEABLE PERFORMANCE OF REPLACEABLE ENERGY DISSIPATION BEAMS WITH BOLTED END PLATES[J]. Engineering Mechanics, 2023, 40(9): 130-141. doi: 10.6052/j.issn.1000-4750.2022.01.0040

采用端板螺栓连接的可更换耗能梁抗震及可更换性能试验研究

doi: 10.6052/j.issn.1000-4750.2022.01.0040
基金项目: 西部绿色建筑国家重点实验室自主研究课题基金项目(LSZZ202115);国家重点研发计划国际合作重点专项项目(2019YFE0112900);国家自然科学基金项目(52178160,51878542)
详细信息
    作者简介:

    门进杰(1979−),男,山东人,教授,博士,博导,主要从事混合结构和地震功能可恢复结构研究(E-mail: men2009@163.com)

    张智勇(1999−),男,山东人,硕士生,主要从事混合结构抗震研究(E-mail: zhangzhiyong199913@163.com)

    王家琛(1992−),男,陕西人,博士生,主要从事钢-混凝土组合结构抗震研究(E-mail: wangjiachen2018@126.com)

    范栋鑫(1994−),男,山西人,博士生,主要从事钢-混凝土组合结构抗震研究(E-mail: fdx359@163.com)

    通讯作者:

    熊礼全(1988−),男,重庆人,讲师,博士,主要从事混合结构和地震功能可恢复结构研究(E-mail: xiongliquan2013@126.com)

  • 中图分类号: TU352.1+1;TU398+.9

EXPERIMENTAL STUDY ON SEISMIC AND REPLACEABLE PERFORMANCE OF REPLACEABLE ENERGY DISSIPATION BEAMS WITH BOLTED END PLATES

  • 摘要: 为研究端板-螺栓连接可更换耗能梁的抗震及可更换性能,设计制作了4个可更换耗能梁试件并进行了拟静力试验,研究不同长度系数对可更换耗能梁抗震性能和可更换能力的影响。结果表明:当长度系数较小时,试件发生剪切破坏,破坏特征包括腹板-加劲肋焊缝撕裂、腹板屈曲和腹板撕裂;当长度系数较大时,试件发生弯剪破坏,破坏特征包括梁端翼缘-端板焊缝撕裂和梁端翼缘屈曲;所有试件的滞回曲线非常饱满,具有优异的变形能力和耗能能力;可更换耗能梁的抗剪承载力强化明显,超强系数均值为1.9;采用端板-螺栓连接的可更换耗能梁均可实现震后可更换,当梁端残余转角为0.0020 rad~0.0046 rad时耗能梁可以实现震后更换,且更换快捷、操作简单;同时,根据耗能梁构件与带可更换构件的RCS混合框架结构体系的几何变形特征,可以将耗能梁的主要受力阶段划分为正常使用、非必要更换和必要更换3个阶段。
  • 图  1  带可更换构件的RCS混合框架结构体系 /m

    Figure  1.  RCS hybrid frame structure with replaceable members

    图  2  试验试件 /mm

    Figure  2.  Test specimens

    图  3  试验装置

    Figure  3.  Test setup

    图  4  试件量测布置图 /mm

    Figure  4.  Layout of specimen measurement

    图  5  加载制度

    Figure  5.  Loading protocol

    图  6  试件整体破坏图

    Figure  6.  Overall failure diagram of specimens

    图  7  典型受损特征

    Figure  7.  Typical damage features

    图  8  试件剪力-塑性转角滞回曲线

    Figure  8.  Shear-plastic rotation hysteretic responses of specimens

    图  9  试件剪力-剪切转角骨架曲线

    Figure  9.  Shear-shear rotation skeleton curves of specimens

    图  10  耗能梁段塑性转角与长度系数的关系

    Figure  10.  Plastic rotation versus length ratio relationship of energy dissipation beams

    图  11  累积塑性转角的计算示意图

    Figure  11.  Calculation diagram of the cumulative plastic rotation

    图  12  试件的累积塑性转角

    Figure  12.  Cumulative plastic rotation of specimens

    图  13  试件能量耗散系数

    Figure  13.  Energy dissipation coefficient of specimens

    图  14  试件RB3腹板剪力-局部剪切应变曲线

    Figure  14.  Shear force-local shear strain curve of RB3 web of specimen

    图  15  试件翼缘应变规律

    Figure  15.  Strain law of specimen flange

    图  16  耗能构件震后可更换性示意图

    Figure  16.  Schematic diagram of post-earthquake replaceability of energy dissipation components

    图  17  耗能构件与混合结构的几何变形关系

    Figure  17.  Deformation relationship between the links and RCS hybrid frame structure

    图  18  耗能构件的可更换性与混合框架结构的关系

    Figure  18.  The relationship between replaceability of energy dissipation links and RCS hybrid frame structure

    表  1  材料性能

    Table  1.   Material properties

    钢材类型 部位 厚度t/mm 屈服强度fy/MPa 抗拉强度fu/MPa 强屈比fu/fy 屈服应变εy/με 弹性模量E/(×105MPa) 延伸率δ/(%)
    Q235 耗能梁腹板 10 291.7 441.7 1.51 1383 2.11 41.5
    Q345 耗能梁翼缘和钢柱腹板 18 391.7 538.3 1.37 1967 1.99 42.5
    Q345 钢柱翼缘 25 443.2 554.5 1.25 2161 2.07 42.7
    下载: 导出CSV

    表  2  试件参数

    Table  2.   Specimen parameters

    试件
    编号
    截面形式/
    (mm×mm×mm×mm)
    耗能梁
    长度e/mm
    长度系数
    e/(Mp/Vp)
    加劲肋布置 试件
    梁端构造
    间距d/mm 布置
    形式
    RB1 I400×200×10×18 740 0.68 4@185 双侧 端板螺栓
    连接
    RB2 940 0.86 5@188
    RB3 1140 1.05 6@190
    RB4 1740 1.60 8@218
    下载: 导出CSV

    表  3  试件抗剪承载力和超强系数

    Table  3.   Shear capacity and overstrength of specimens

    试件
    编号
    实测屈曲
    剪力Vpn/kN
    极限抗剪
    承载力Vu/kN
    超强
    系数Ω
    RB1 573.3 1190.1 2.07
    RB2 573.3 1133.4 1.98
    RB3 573.3 1131.0 1.97
    RB4 573.3 894.5 1.56
    下载: 导出CSV

    表  4  试件变形能力

    Table  4.   Deformation capacity of specimens

    试件
    编号
    屈服转角
    γy/rad
    极限塑性
    转角γp/rad
    累积塑性转角
    Σγp/rad
    累积延性
    系数Σγp/γy
    RB1 0.00225 0.0877 1.26 560
    RB2 0.00292 0.0871 1.38 473
    RB3 0.00234 0.0876 1.32 564
    RB4 0.00467 0.0652 0.97 208
    下载: 导出CSV

    表  5  耗能梁的可更换性

    Table  5.   Replaceability of energy dissipation beams

    试件编号 可更换时梁端
    残余转角γre, L /rad
    连肢钢柱节点区的变形/rad
    最大弹性转角 残余转角γre, C
    RB1 0.0046 0.000 32
    RB2 0.0034 0.000 38
    RB3 0.0033 0.000 22
    RB4 0.0020 0.000 30
    下载: 导出CSV

    表  6  耗能梁的变形能力

    Table  6.   Deformability of energy dissipation beams

    RCS混合框架结构
    层间位移角限值
    耗能梁的剪切变形/rad
    RB1 RB2 RB3 RB4
    正常使用 1/400 0.0047 0.0043 0.0039 0.0034
    耗能构件可更换 1/160 0.0118 0.0106 0.0099 0.0086
    生命安全 1/60 0.0315 0.0284 0.0263 0.0230
    下载: 导出CSV
  • [1] GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.

    GB 50011−2010, Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese)
    [2] 吕西林, 武大洋, 周颖. 可恢复功能防震结构研究进展[J]. 建筑结构学报, 2019, 40(2): 1 − 15. doi: 10.14006/j.jzjgxb.2019.02.001

    LYU Xilin, WU Dayang, ZHOU Ying. State-of-the-art of earthquake resilient structures [J]. Journal of Building Structures, 2019, 40(2): 1 − 15. (in Chinese) doi: 10.14006/j.jzjgxb.2019.02.001
    [3] EATHERTON M R, MA X, KRAWINKLER H, et al. Quasi-static cyclic behavior of controlled rocking steel frames [J]. Journal of Structural Engineering, 2014, 140(11): 04014083. doi: 10.1061/(ASCE)ST.1943-541X.0001005
    [4] CLAYTON P M, BERMAN J W, LOWES L N. Subassembly testing and modeling of self-centering steel plate shear walls [J]. Engineering Structures, 2013, 56: 1848 − 1857. doi: 10.1016/j.engstruct.2013.06.030
    [5] 姜子钦, 杨晓峰, 张爱林, 等. 带可更换抗侧耗能装置的装配式钢框架结构静力性能研究[J]. 北京工业大学学报, 2021, 47(4): 365 − 373, 382. doi: 10.11936/bjutxb2020110040

    JIANG Ziqin, YANG Xiaofeng, ZHANG Ailin, et al. Study on static behavior of steel frame structure with lateral resistance energy-consuming device [J]. Journal of Beijing University of Technology, 2021, 47(4): 365 − 373, 382. (in Chinese) doi: 10.11936/bjutxb2020110040
    [6] 张浩, 连鸣, 苏明周, 等. 带可更换低屈服点耗能梁段-端板连接的钢框筒结构抗震性能试验研究[J]. 土木工程学报, 2020, 53(7): 28 − 42.

    ZHANG Hao, LIAN Ming, SU Mingzhou, et al. Experimental study on seismic behavior of steel framed-tube structure with end-plate connected replaceable shear links made of low yield point steel [J]. China Civil Engineering Journal, 2020, 53(7): 28 − 42. (in Chinese)
    [7] ZHANG H, SU M Z, LIAN M, et al. Experimental and numerical study on the seismic behavior of high-strength steel framed-tube structures with end-plate-connected replaceable shear links [J]. Engineering Structures, 2020, 223: 111172. doi: 10.1016/j.engstruct.2020.111172
    [8] LIAN M, GUAN B L, CHENG Q Q, et al. Experimental and numerical study of seismic performance of high-strength steel fabricated framed-tube structures with replaceable shear links [J]. Structures, 2020, 28: 2714 − 2732. doi: 10.1016/j.istruc.2020.10.081
    [9] 纪晓东, 王彦栋, 马琦峰, 等. 可更换钢连梁抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10): 1 − 10.

    JI Xiaodong, WANG Yandong, MA Qifeng, et al. Experimental study on seismic behavior of replaceable steel coupling beams [J]. Journal of Building Structures, 2015, 36(10): 1 − 10. (in Chinese)
    [10] JI X D, WANG T D, MA Q F, et al. Cyclic behavior of replaceable steel coupling beams [J]. Journal of Structural Engineering, 2017, 143(2): 04016169. doi: 10.1061/(ASCE)ST.1943-541X.0001661
    [11] MANSOUR N, CHRISTOPOULOS C, TREMBLAY R. Experimental validation of replaceable shear links for eccentrically braced steel frames [J]. Journal of Structural Engineering, 2011, 137(10): 1141 − 1152. doi: 10.1061/(ASCE)ST.1943-541X.0000350
    [12] SHEN Y L, CHRISTOPOULOS C, MANSOUR N, et al. Seismic design and performance of steel moment-resisting frames with nonlinear replaceable links [J]. Journal of Structural Engineering, 2011, 137(10): 1107 − 1117. doi: 10.1061/(ASCE)ST.1943-541X.0000359
    [13] JI X D, LIU D, SUN Y, et al. Seismic performance assessment of a hybrid coupled wall system with replaceable steel coupling beams versus traditional RC coupling beams [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(4): 517 − 535.
    [14] YAO Z C, WANG W, FANG C, et al. An experimental study on eccentrically braced beam-through steel frames with replaceable shear links [J]. Engineering Structures, 2020, 206: 110185. doi: 10.1016/j.engstruct.2020.110185
    [15] 谢鲁齐, 吴京, 章锦洋, 等. 可更换耗能连接力学机理及变形性能研究[J]. 工程力学, 2020, 37(6): 186 − 195. doi: 10.6052/j.issn.1000-4750.2019.08.0475

    XIE Luqi, WU Jing, ZHANG Jinyang, et al. Study on the mechanical and deformation properties of replaceable energy dissipation connectors [J]. Engineering Mechanics, 2020, 37(6): 186 − 195. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0475
    [16] 孙东德, 杨勇, 马银科, 等. 采用单侧角钢的梁柱可更换连接件抗震性能试验研究[J]. 工程力学, 2022, 39(4): 151 − 163. doi: 10.6052/j.issn.1000-4750.2021.02.0122

    SUN Dongde, YANG Yong, MA Yinke, et al. Experimental study on seismic performance of replaceable beam-column connector with single-sided angle steel [J]. Engineering Mechanics, 2022, 39(4): 151 − 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0122
    [17] 黄炜, 胡高兴. 可恢复预制装配式RC梁柱节点抗震性能研究[J]. 工程力学, 2022, 39(12): 165 − 176, 189. doi: 10.6052/j.issn.1000-4750.2021.07.0554

    HUANG Wei, HU Gaoxing. Seismic performance of earthquake-resilient precast rc beam-column joints [J]. Engineering Mechanics, 2022, 39(12): 165 − 176, 189. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0554
    [18] 叶建峰, 郑莲琼, 颜桂云, 等. 装配式可更换耗能铰滞回性能试验研究[J]. 工程力学, 2021, 38(8): 42 − 54. doi: 10.6052/j.issn.1000-4750.2020.07.0531

    YE Jianfeng, ZHENG Lianqiong, YAN Guiyun, et al. Experimental study on hysteretic performance of replaceable energy-dissipating prefabricated hinges [J]. Engineering Mechanics, 2021, 38(8): 42 − 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0531
    [19] 门进杰, 霍文武, 兰涛, 等. 基于刚度和位移带可更换构件RCS混合框架结构抗震设计方法[J]. 工程力学, 2021, 38(4): 169 − 178. doi: 10.6052/j.issn.1000-4750.2020.06.0370

    MEN Jinjie, HUO Wenwu, LAN Tao, et al. Seismic design method of RCS hybrid frame structure with replaceable members based on stiffness and displacement [J]. Engineering Mechanics, 2021, 38(4): 169 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0370
    [20] 门进杰, 霍文武, 兰涛, 等. 带可更换构件的RCS混合框架结构受力特性及抗震设计方法[J]. 土木工程学报, 2020, 53(6): 42 − 52.

    MEN Jinjie, HUO Wenwu, LAN Tao, et al. Mechanical behavior and seismic design method of RCS hybrid frame structure with replaceable components [J]. China Civil Engineering Journal, 2020, 53(6): 42 − 52. (in Chinese)
    [21] ANSI/AISC 341-10, Seismic provisions for structural steel buildings [S]. Chicago: American Institute of Steel Construction, 2010.
    [22] ROSSI P P, LOMBARDO A. Influence of the link overstrength factor on the seismic behaviour of eccentrically braced frames [J]. Journal of Constructional Steel Research, 2007, 63(11): 1529 − 1545. doi: 10.1016/j.jcsr.2007.01.006
    [23] AZAD K S, TOPKAYA C. A review of research on steel eccentrically braced frames [J]. Journal of Constructional Steel Research, 2017, 128: 53 − 73. doi: 10.1016/j.jcsr.2016.07.032
    [24] MCDANIEL C C, UANG C M, SEIBLE F. Cyclic testing of built-up steel shear links for the new bay bridge [J]. Journal of Structural Engineering, 2003, 129(6): 801 − 809. doi: 10.1061/(ASCE)0733-9445(2003)129:6(801)
    [25] RICHARDS P, UANG C M. Development of testing protocol for short links in eccentrically braced frames [R]. San Diego: University of California at San Diego, 2003.
    [26] OKAZAKI T, ENGELHARDT M D. Cyclic loading behavior of EBF links constructed of ASTM A992 steel [J]. Journal of Constructional Steel Research, 2007, 63(6): 751 − 765. doi: 10.1016/j.jcsr.2006.08.004
    [27] 王彦栋. 带RC楼板的可更换钢连梁抗震性能及设计方法研究[D]. 北京: 清华大学, 2016.

    WANG Yandong. Study on seismic behavior and design of replaceable steel coupling beams with RC slabs [D]. Beijing: Tsinghua University, 2016. (in Chinese)
    [28] GÁLVEZ P. Investigation of factors affecting web fractures in shear links [D]. Austin: The University of Texas at Austin, 2004.
    [29] 纪晓东, 马琦峰, 王彦栋, 等. 钢连梁可更换消能梁段抗震性能试验研究[J]. 建筑结构学报, 2014, 35(6): 1 − 11. doi: 10.14006/j.jzjgxb.2014.06.002

    JI Xiaodong, MA Qifeng, WANG Yandong, et al. Cyclic tests of replaceable shear links in steel coupling beams [J]. Journal of Building Structures, 2014, 35(6): 1 − 11. (in Chinese) doi: 10.14006/j.jzjgxb.2014.06.002
    [30] HJELMSTAD K D, POPOV E P. Seismic behavior of active beam links in eccentrically braced frames [R]. Berkeley: University of California, 1983.
    [31] ENGELHARDT M D, POPOV E P. Behavior of long links in eccentrically braced frames [R]. Berkeley: University of California, 1989.
    [32] RYU H C. Effects of loading history on the behavior of links in seismic resistant eccentrically braced frames [D]. Austin: University of Texas at Austin, 2005.
    [33] ARCE G, OKAZAKI T, ENGELHARDT M D. Experiments on the impact of higher strength steels on local buckling and overstrength of links in EBFs [R]. Austin: University of Texas at Austin, 2001.
    [34] OKAZAKI T, ENGELHARDT M D, HONG J K, et al. Improved link-to-column connections for steel eccentrically braced frames [J]. Journal of Structural Engineering, 2015, 141(8): 04014201. doi: 10.1061/(ASCE)ST.1943-541X.0001041
    [35] OKAZAKI T, ENGELHARDT M D, NAKASHIMA M, et al. Experimental performance of link-to-column connections in eccentrically braced frames [J]. Journal of Structural Engineering, 2006, 132(8): 1201 − 1211. doi: 10.1061/(ASCE)0733-9445(2006)132:8(1201)
    [36] STEPHENS M, DUSICKA P. Continuously stiffened composite web shear links: Tests and numerical model validation [J]. Journal of Structural Engineering, 2014, 140(7): 04014040. doi: 10.1061/(ASCE)ST.1943-541X.0000996
    [37] DUSICKA P, ITANI A M, BUCKLE I G. Cyclic behavior of shear links of various grades of plate steel [J]. Journal of Structural Engineering, 2010, 136(4): 370 − 378. doi: 10.1061/(ASCE)ST.1943-541X.0000131
    [38] LIU X G, FAN J S, LIU Y F, et al. Experimental research of replaceable Q345GJ steel shear links considering cyclic buckling and plastic overstrength [J]. Journal of Constructional Steel Research, 2017, 134: 160 − 179. doi: 10.1016/j.jcsr.2017.03.018
    [39] KASAI K, POPOV E P. A study of seismically resistant eccentrically braced steel frame systems [R]. Berkeley: University of California, 1986.
    [40] MALLEY J O, POPOV E P. Shear links in eccentrically braced frames [J]. Journal of Structural Engineering, 1984, 110(9): 2275 − 2295. doi: 10.1061/(ASCE)0733-9445(1984)110:9(2275)
    [41] RICLES J M, POPOV E P. Experiments on eccentrically braced frames with composite floors [R]. Berkeley: University of California, 1987.
    [42] HJELMSTAD K D, POPOV P E. Characteristics of eccentrically braced frames [J]. Journal of Structural Engineering, 1984, 110(2): 340 − 353. doi: 10.1061/(ASCE)0733-9445(1984)110:2(340)
  • 加载中
图(18) / 表(6)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  52
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 修回日期:  2022-08-10
  • 网络出版日期:  2022-09-29
  • 刊出日期:  2023-09-06

目录

    /

    返回文章
    返回