RESEARCH ON SECTION CLASSIFICATION OF AUSTENITIC STAINLESS STEEL FLEXURAL MEMBERS
-
摘要: 为对不锈钢受弯构件截面分类进行研究,借助有限元软件ABAQUS建立了不锈钢焊接工字形和箱形截面构件有限元模型,并基于试验结果验证了有限元模型的有效性。基于有限元模型开展了大量的参数分析,由此对欧洲不锈钢规范EN 1993-1-4+A2和《钢结构设计标准》(GB 50017−2017)中截面板件宽厚比分类限值的合理性和适用性进行了评价。在考虑截面组成板件的相关性基础上,提出了针对奥氏体型不锈钢受弯构件截面分类方法和不同截面板件宽厚比等级及限值。Abstract: In order to study the section classification of stainless steel flexural members, the finite element (FE) software ABAQUS was used to establish the FE model of stainless steel welded I-section and box-section members, and the validity of the FE models was verified by the experimental results. Using the FE model, a large number of parameter analyses were carried out, and the rationality and applicability of the classification limit of the width-to-thickness ratio of section plates in European stainless steel code EN 1993-1-4+A2 and standard for design of steel structures GB 50017−2017 were evaluated. By considering the correlation of section components, the paper proposed the section classification method, width-to-thickness ratio grade and limit value of section plates for austenitic stainless steel flexural members.
-
图 1 四点弯加载装置[12]
Figure 1. Four-point bending test setup
图 3 三点弯加载装置[13]
Figure 3. Three-point bending test setup
图 9 有限元失稳模态和试验结果对比[7]
Figure 9. Comparison of FE and test failure modes
图 10 试验和有限元荷载-水平位移曲线对比[8]
Figure 10. Comparison between FE and test load-lateral deformation curves
表 1 受弯构件截面板件宽厚比等级及限值
Table 1. Width-to-thickness ratio grade and limit value of plate of flexural members section
EN 1993-1-4+A2 Class 1 Class 2 Class 3 Class 4 工字形截面 腹板 72ε 76ε 90ε − 翼缘 9ε 10ε 14ε − 箱形截面 腹板 72ε 76ε 90ε − 翼缘 33ε 35ε 37ε − GB 50017−2017 S1 S2 S3 S4 S5 工字形截面 腹板 65εk 72εk 93εk 124εk 250 翼缘 9εk 11εk 13εk 15εk 20 箱形截面 腹板 65εk 72εk 93εk 124εk 250 翼缘 25εk 32εk 37εk 42εk − 注:ε = (235E/ (210 000fy))0.5,εk = (235/ fy)0.5。 表 2 有限元和试验承载力对比结果
Table 2. Comparison between FE and test ultimate resistances
表 3 有限元和试验承载力对比结果[8]
Table 3. Comparison between FE and test ultimate resistances
试件编号 试验极限荷载Pu, test/kN 有限元极限荷载Pu, FE/kN Pu, FE /Pu, test S304-3000-1 302.2 303.6 1.00 S304-3000-2 236.2 247.9 1.05 S304-4000-1 248.2 244.8 0.99 S304-4000-2 215.4 225.2 1.05 平均值 − − 1.02 表 4 提出的不锈钢受弯构件截面板件宽厚比等级及限值
Table 4. Proposed width-to-thickness ratio grade and limit value of plate of stainless steel flexural members section
提出的 SS1 SS2 SS3 SS4 工字形截面 腹板 73εk 89εk 102εk − 翼缘 10εk 12εk 14εk − 箱形截面 腹板 65εk 80εk 98εk − 翼缘 26εk 33εk 40εk − 注:εk = (235/ fy)0.5。 -
[1] GARDNER L. Stability and design of stainless steel structures – Review and outlook [J]. Thin-Walled Structures, 2019, 141: 208 − 216. doi: 10.1016/j.tws.2019.04.019 [2] CECS 410: 2015, 不锈钢结构技术规程[S]. 北京: 中国计划出版社, 2015.CECS 410: 2015, Technical specification for stainless steel structures [S]. Beijing: China Planning Press, 2015. (in Chinese) [3] GB 50017−2017, 钢结构设计标准[S]. 北京: 中国建筑工业出版, 2017.GB 50017−2017, Standard for design of steel structures [S]. Beijing: China Architecture& Building Presss, 2017. (in Chinese) [4] EN 1993-1-4+A2, Eurocode 3: Design of steel structures- Part 1-4: General rules: Supplementary rules for stainless steels [S]. Brussels: European Committee for Standardization, 2020. [5] 王萌, 杨维国, 王元清, 等. 奥氏体不锈钢滞回本构模型研究[J]. 工程力学, 2015, 32(11): 107 − 114. doi: 10.6052/j.issn.1000-4750.2014.04.0354WANG Meng, YANG Weiguo, WANG Yuanqiang, et al. Study on hysteretic constitutive model of austenitic stainless steel [J]. Engineering Mechanics, 2015, 32(11): 107 − 114. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.04.0354 [6] 常笑, 杨璐, 王萌, 等. 循环荷载下奥氏体型和双相型不锈钢材料本构关系研究[J]. 工程力学, 2019, 36(5): 140 − 150. doi: 10.6052/j.issn.1000-4750.2018.03.0184CHANG Xiao, YANG Lu, WANG Meng, et al. Study on constitutive model of austenitic stainless steel and duplex stainless steel under cyclic loading [J]. Engineering Mechanics, 2019, 36(5): 140 − 150. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0184 [7] 骆晶, 施刚, 毛灵涛, 等. 双相型不锈钢 S22053 循环本构关系研究[J]. 工程力学, 2021, 38(9): 171 − 181. doi: 10.6052/j.issn.1000-4750.2020.09.0659LUO Jing, SHI Gang, MAO Lingtao, et al. Constitutive relation of duplex stainless steel S22053 under cyclic loading [J]. Engineering Mechanics, 2021, 38(9): 171 − 181. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0659 [8] 杨璐, 宁克洋, 班慧勇, 等. 不锈钢焊接箱形截面压弯构件弯曲屈曲试验研究[J]. 工程力学, 2018, 35(12): 143 − 150. doi: 10.6052/j.issn.1000-4750.2017.09.0741YANG Lu, NING Keyang, BAN Huiyong, et al. Experimental research on flexural buckling of stainless steel welded box-section beam-columns [J]. Engineering Mechanics, 2018, 35(12): 143 − 150. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.09.0741 [9] 宁克洋, 杨璐, 赵梦涵. 不锈钢压弯构件整体稳定性能有限元研究与承载力计算方法[J]. 工程力学, 2019, 36(12): 113 − 120. doi: 10.6052/j.issn.1000-4750.2018.12.0705NING Keyang, YANG Lu, ZHAO Menghan. FE research on the overall stability of stainless-steel beam-columns and calculation method of bearing capacity [J]. Engineering Mechanics, 2019, 36(12): 113 − 120. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0705 [10] NING K Y, YANG L, BAN H Y, et al. Experimental and numerical studies on hysteretic behaviour of stainless steel welded box-section columns [J]. Thin-Walled Structures, 2019, 136: 280 − 291. doi: 10.1016/j.tws.2018.12.038 [11] NING K Y, YANG L, WANG J, et al. Experimental and numerical study of hot-rolled duplex stainless steel CHS columns [J]. Journal of Constructional Steel Research, 2021, 180: 106579. doi: 10.1016/j.jcsr.2021.106579 [12] SUN Y, ZHAO O. Material response and local stability of high-chromium stainless steel welded I-sections [J]. Engineering Structures, 2019, 178: 212 − 226. doi: 10.1016/j.engstruct.2018.10.024 [13] 袁焕鑫, 陈晓婉, 蔡继生, 等. 不锈钢焊接截面简支梁非线性变形性能研究[J]. 工程力学, 2021, 38(1): 78 − 88. doi: 10.6052/j.issn.1000-4750.2020.01.0022YUAN Huanxin, CHEN Xiaowan, CAI Jisheng, et al. Non-linear deflection performance of welded stainless steel I-section beams [J]. Engineering Mechanics, 2021, 38(1): 78 − 88. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0022 [14] 宁克洋, 杨璐, 班慧勇. 不锈钢箱形截面柱抗震性能研究[J]. 土木工程学报, 2020, 53(4): 23 − 30.NING Keyang, YANG Lu, BAN Huiyong. Research on seismic behavior of stainless steel box-section column [J]. China Civil Engineering Journal, 2020, 53(4): 23 − 30. (in Chinese) [15] 袁焕鑫, 陈晓婉, 向虎, 等. 弯剪共同作用下不锈钢薄腹梁承载性能试验研究[J]. 土木工程学报, 2021, 54(4): 37 − 44.YUAN Huanxin, CHEN Xiaowan, XIANG Hu, et al. Experimental study on stainless steel plate girders subjected to bending and shear interaction [J]. China Civil Engineering Journal, 2021, 54(4): 37 − 44. (in Chinese) [16] BU Y D, WANG Y Q, ZHAO Y P. Study of stainless steel bolted extended end-plate joints under seismic loading [J]. Thin-Walled Structures, 2019, 144: 106255. doi: 10.1016/j.tws.2019.106255 [17] GAO J D, DU X X, YUAN H X, et al. Hysteretic performance of stainless steel double extended end-plate beam-to-column joints subject to cyclic loading [J]. Thin-Walled Structures, 2021, 164: 107787. doi: 10.1016/j.tws.2021.107787 [18] 王元清, 乔学良, 贾连光, 等. 单调加载下不锈钢结构梁柱栓焊混用节点承载性能分析[J]. 工程力学, 2019, 36(增刊 1): 59 − 65. doi: 10.6052/j.issn.1000-4750.2018.07.S008WANG Yuanqing, QIAO Xueliang, JIA Lianguang, et al. Experimental research and FEM analysis on behavior of beam-column connections made of stainless-steel [J]. Engineering Mechanics, 2019, 36(Suppl 1): 59 − 65. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.S008 [19] GARDNER L, THEOFANOUS M. Discrete and continuous treatment of local buckling in stainless steel elements [J]. Journal of Constructional Steel Research, 2008, 64: 1207 − 1216. doi: 10.1016/j.jcsr.2008.07.003 [20] SUN Y, LIU Z K, LIANG Y T, et al. Experimental and numerical investigations of hot-rolled austenitic stainless steel equal-leg angle sections [J]. Thin-Walled Structures, 2019: 144. [21] GKANTOU M, KOKOSIS G, THEOFANOUS M, et al. Plastic design of stainless steel continuous beams [J]. Journal of Constructional Steel Research, 2019, 152: 68 − 80. doi: 10.1016/j.jcsr.2018.03.025 [22] ZHANG L L, TAN, K H, ZHAO O. Local stability of press-braked stainless steel angle and channel sections: Testing, numerical modelling and design analysis [J]. Engineering Structures, 2020, 203: 109869. doi: 10.1016/j.engstruct.2019.109869 [23] YUAN H X, WANG Y Q, GARDNER L, et al. Local-overall interactive buckling of welded stainless steel box section compression members [J]. Engineering Structures, 2014, 67: 62 − 76. doi: 10.1016/j.engstruct.2014.02.012 [24] GARDNER L, NETHERCOT D A. Numerical modeling of stainless steel structural components-a consistent approach [J]. Journal of Structural Engineering, 2004, 130(10): 1586 − 1601. doi: 10.1061/(ASCE)0733-9445(2004)130:10(1586) [25] YUAN H X, WANG Y Q, SHI Y J, et al. Residual stress distributions in welded stainless steel sections [J]. Thin-Walled Structures, 2014, 79(2): 38 − 51. -