留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑上部质量的双柱CFST桥墩抗车辆撞击力学性能研究

杨旭 王蕊 赵晖 樊伟 毛敏

杨旭, 王蕊, 赵晖, 樊伟, 毛敏. 考虑上部质量的双柱CFST桥墩抗车辆撞击力学性能研究[J]. 工程力学, 2023, 40(9): 61-73. doi: 10.6052/j.issn.1000-4750.2022.01.0019
引用本文: 杨旭, 王蕊, 赵晖, 樊伟, 毛敏. 考虑上部质量的双柱CFST桥墩抗车辆撞击力学性能研究[J]. 工程力学, 2023, 40(9): 61-73. doi: 10.6052/j.issn.1000-4750.2022.01.0019
YANG Xu, WANG Rui, ZHAO Hui, FAN Wei, MAO Min. STUDY ON THE IMPACT RESISTANCE OF DOUBLE-COLUMN CONCRETE-FILLED STEEL TUBULAR BRIDGE PIERS CONSIDERING THE SUPERSTRUCTURE MASS[J]. Engineering Mechanics, 2023, 40(9): 61-73. doi: 10.6052/j.issn.1000-4750.2022.01.0019
Citation: YANG Xu, WANG Rui, ZHAO Hui, FAN Wei, MAO Min. STUDY ON THE IMPACT RESISTANCE OF DOUBLE-COLUMN CONCRETE-FILLED STEEL TUBULAR BRIDGE PIERS CONSIDERING THE SUPERSTRUCTURE MASS[J]. Engineering Mechanics, 2023, 40(9): 61-73. doi: 10.6052/j.issn.1000-4750.2022.01.0019

考虑上部质量的双柱CFST桥墩抗车辆撞击力学性能研究

doi: 10.6052/j.issn.1000-4750.2022.01.0019
基金项目: 国家自然科学基金项目(52108162) ;山西省自然科学基金项目(20210302123119) ;山西交通控股集团科技项目(20-JKKJ-28)
详细信息
    作者简介:

    杨旭(1999−),男,山西人,硕士生,主要从事组合结构基本力学性能研究 (E-mail: yangxu_yc@163.com)

    王蕊(1979−),女,山西人,教授,博士,主要从事组合结构防灾减灾研究 (E-mail: wangrui@tyut.edu.cn)

    樊伟(1985−),男,江西人,教授,博士,主要从事桥梁结构抗冲击与防护研究 (E-mail: wfan@hnu.edu.cn)

    毛敏(1983−),男,湖北人,正高工,硕士,主要从事桥梁抗震与健康监测研究 (E-mail: 13466855439@163.com)

    通讯作者:

    赵晖(1988−),男,山西人,副教授,博士,主要从事组合结构抗火与抗撞研究 (E-mail: zhaohui01@tyut.edu.cn)

  • 中图分类号: TU398+.9

STUDY ON THE IMPACT RESISTANCE OF DOUBLE-COLUMN CONCRETE-FILLED STEEL TUBULAR BRIDGE PIERS CONSIDERING THE SUPERSTRUCTURE MASS

  • 摘要: 钢管混凝土(CFST)构件可充分发挥钢管与核心混凝土优点,在桥梁墩柱中已得到应用,抗撞设计是其在墩柱中推广应用的关键问题。因此,该文基于LS-DYNA有限元软件建立了56个车辆撞击双柱CFST桥墩分析模型并进行抗撞机理与参数分析。基于前期落锤撞击结果与实车撞击试验验证了模型可靠性;对典型工况下撞击力和桥墩塑性应变发展、内力分布和能量转换进行研究并重点分析了含钢率、轴压比、货物刚度、车辆质量和速度对CFST桥墩撞击力和侧向位移分布的影响规律;采用等效静力法计算得到25 ms等效车辆撞击力(ESF25)并对AASHTO规程建议值进行评估,提出车撞CFST桥墩撞击力预测公式。结果表明:车辆撞击下CFST桥墩钢管与核心混凝土协同工作,钢管是主要耗能部件;由于上部结构和桥墩惯性作用,不同撞击时刻桥墩内力分布具有显著差异;车辆质量与速度对撞击力发展影响显著,含钢率与轴压比影响较小,货物弹性模量在2000 MPa内变化时影响较大;建议的撞击力公式可较好预测考虑上部质量影响的CFST桥墩撞击力。
  • 图  1  桥梁有限元模型 /mm

    Figure  1.  FE model of the bridge structure

    图  2  福特F800卡车模型

    Figure  2.  Ford F800 truck model

    图  3  有限元与试验结果对比(破坏模式)

    Figure  3.  Comparison of the failure pattern between FE and test results

    图  4  有限元与试验结果对比(撞击力与挠度)

    Figure  4.  Comparison of the impact force and deflection between FE and test results

    图  5  车辆破坏模式对比

    Figure  5.  Failure patterns of trucks

    图  6  车辆撞击力时程曲线对比

    Figure  6.  Comparison of impact force time-histories

    图  7  车辆撞击力时程曲线图

    Figure  7.  Time-histories curve of vehicle impact force

    图  8  撞击力随高度和时间分布等值线图

    Figure  8.  Contours of impact force distribution along the pier height and time

    图  9  桥墩塑性应变发展系列图

    Figure  9.  Plastic strain development of bridge piers

    图  10  沿桥墩高度截面弯矩和剪力分布图

    Figure  10.  Bending moments and shear forces along pier height

    图  11  碰撞过程能量变化时程曲线

    Figure  11.  Energy transformation during collision

    图  12  碰撞过程桥墩部件能量分配

    Figure  12.  Energy distribution among bridge pier components during collision

    图  13  含钢率影响

    Figure  13.  Influence of steel ratio

    图  14  轴压比影响

    Figure  14.  Influence of axial-load ratio

    图  15  货物刚度影响

    Figure  15.  Influence of cargo stiffness

    图  16  车辆速度影响

    Figure  16.  Influence of vehicle velocity

    图  17  车辆质量影响

    Figure  17.  Influence of vehicle mass

    图  18  相关参数对ESF25的影响

    Figure  18.  Influences of related parameters on ESF25

    图  19  有限元计算值与公式结果对比

    Figure  19.  Comparison between FE and prediction results

    表  1  材料参数

    Table  1.   Material parameters

    部件 材料模型 参数
    混凝土 *MAT_072R3
    (*MAT_CONCRETE_DAMAGE_REAL3)
    密度 2400 kg/m3
    抗压强度 31.6 MPa
    泊松比 0.2
    钢管 *MAT_003
    (*MAT_PLASTIC_KINEMATIC)
    密度 7850 kg/m3
    弹性模量 201 GPa
    屈服强度 355 MPa
    切线模量 1500 MPa
    泊松比 0.3
    失效应变 0.2
    钢筋 *MAT_003
    (*MAT_PLASTIC_KINEMATIC)
    密度 7850 kg/m3
    弹性模量 201 GPa
    屈服强度 400 MPa
    泊松比 0.3
    失效应变 0.2
    下载: 导出CSV

    表  2  试件参数

    Table  2.   Parameters of specimen

    试件编号 边界条件 试件长度/mm 外径×壁厚/
    (mm×mm)
    撞击能量/
    kJ
    来源
    DZFS4 固简支 1200 114×3.50 16.65 文献[22]
    CC1 两端固支 1940 180×3.65 19.72 文献[23]
    CS3 固简支 2400 180×3.65 14.77
    SS2 两端简支 2800 180×3.65 14.89
    下载: 导出CSV

    表  3  设计工况参数

    Table  3.   Parameters of designed conditions

    参数类别 编号 含钢率α 轴压比n 货物弹性模量E/MPa 车辆质量m/t 车辆速度v/(km/h)
    含钢率 M12-V100-α6-n0.1-E2000 0.06 0.1 2000 12 100
    M12-V100-α8-n0.1-E2000 0.08 0.1 2000 12 100
    M12-V100-α10-n0.1-E2000 0.10 0.1 2000 12 100
    M12-V100-α12-n0.1-E2000 0.12 0.1 2000 12 100
    轴压比 M12-V100-α8-n0.01-E2000 0.08 0.01 2000 12 100
    M12-V100-α8-n0.03-E2000 0.08 0.03 2000 12 100
    M12-V100-α8-n0.07-E2000 0.08 0.07 2000 12 100
    M12-V100-α8-n0.1-E2000 0.08 0.1 2000 12 100
    货物弹性模量 M12-V100-α8-n0.1-E200 0.08 0.1 200 12 100
    M12-V100-α8-n0.1-E2000 0.08 0.1 2000 12 100
    M12-V100-α8-n0.1-E20000 0.08 0.1 20000 12 100
    M12-V100-α8-n0.1-E200000 0.08 0.1 200000 12 100
    车辆质量 M6-V100-α8-n0.1-E2000 0.08 0.1 2000 6 100
    M12-V100-α8-n0.1-E2000 0.08 0.1 2000 12 100
    M18-V100-α8-n0.1-E2000 0.08 0.1 2000 18 100
    M24-V100-α8-n0.1-E2000 0.08 0.1 2000 24 100
    车辆速度 M12-V80-α8-n0.1-E2000 0.08 0.1 2000 12 80
    M12-V100-α8-n0.1-E2000 0.08 0.1 2000 12 100
    M12-V120-α8-n0.1-E2000 0.08 0.1 2000 12 120
    M12-V140-α8-n0.1-E2000 0.08 0.1 2000 12 140
    注:“M12-V100-α8-n0.1-E2000”表示车辆质量为12 t、速度为100 km/h、桥墩含钢率为8%、轴压比为0.1、货物弹性模量为2000 MPa。
    下载: 导出CSV
  • [1] 韩林海. 钢管混凝土结构——理论与实践[M]. 北京: 科学出版社, 2016.

    HAN Linhai. Concrete filled steel tubular structures-theory and practice [M]. Beijing: Science Press, 2016. (in Chinese)
    [2] 王志滨, 吴扬杭, 余鑫, 等. 圆端形钢管混凝土柱偏压性能研究[J]. 建筑结构学报, 2022, 43(4): 177 − 185.

    WANG Zhibin, WU Yanghang, YU Xin, et al. Behavior of concrete-filled round-ended steel tubular column under eccentric compression [J]. Journal of Building Structures, 2022, 43(4): 177 − 185. (in Chinese)
    [3] BUTH C E, WILLIAMS W F, BRACKIN M S, et al. Analysis of large truck collisions with bridge piers: phase 1, Report of guidelines for designing bridge piers and abutments for vehicle collisions [R]. Texas: Texas Transportation Institute Proving Ground, 2010.
    [4] 陈林. 桥墩防车辆撞击研究[D]. 长沙: 湖南大学, 2015.

    CHEN Lin. Research on bridge piers subjected to vehicle collisions [D]. Changsha: Hunan University, 2015. (in Chinese)
    [5] SHARMA H, HURLEBAUS S, GARDONI P. Performance-based response evaluation of reinforced concrete columns subject to vehicle impact [J]. International Journal of Impact Engineering, 2012, 43: 52 − 62. doi: 10.1016/j.ijimpeng.2011.11.007
    [6] 樊伟, 毛薇, 庞于涛, 等. 钢筋混凝土柱式桥墩抗车撞可靠度分析研究[J]. 中国公路学报, 2021, 34(2): 162 − 176.

    FAN Wei, MAO Wei, PANG Yutao, et al. Reliability analysis of reinforced concrete column bridge piers subjected to vehicle collisions [J]. China Journal of Highway and Transport, 2021, 34(2): 162 − 176. (in Chinese)
    [7] 肖岩, 陈林, 肖果, 等. 防撞柱实车碰撞性能研究[J]. 振动与冲击, 2013, 32(11): 1 − 6.

    XIAO Yan, CHEN Lin, XIAO Guo, et al. Test for anti-ram bollards based on truck collision [J]. Journal of Vibration and Shock, 2013, 32(11): 1 − 6. (in Chinese)
    [8] 陈林, 曾玉烨, 颜泽峰, 等. 车辆撞击下钢筋混凝土桥墩的动力响应及损伤特征[J]. 振动与冲击, 2019, 38(13): 261 − 267, 273.

    CHEN Lin, ZENG Yuye, YAN Zefeng, et al. Dynamic response and damage characteristics of a RC pier under vehicle impacting [J]. Journal of Vibration and Shock, 2019, 38(13): 261 − 267, 273. (in Chinese)
    [9] DO T V, PHAM T M, HAO H. Dynamic responses and failure modes of bridge columns under vehicle collision [J]. Engineering Structures, 2018, 156: 243 − 259. doi: 10.1016/j.engstruct.2017.11.053
    [10] FAN W, XU X, ZHANG Z, et al. Performance and sensitivity analysis of UHPFRC-strengthened bridge columns subjected to vehicle collisions [J]. Engineering Structures, 2018, 173: 251 − 268. doi: 10.1016/j.engstruct.2018.06.113
    [11] AUYEUNG S, ALIPOUR A, SAINI D. Performance-based design of bridge piers under vehicle collision [J]. Engineering Structures, 2019, 191: 752 − 765. doi: 10.1016/j.engstruct.2019.03.005
    [12] CHEN L, QIAN J, TU B, et al. Performance-based risk assessment of reinforced concrete bridge piers subjected to vehicle collision [J]. Engineering Structures, 2021, 229: 111640. doi: 10.1016/j.engstruct.2020.111640
    [13] SAINI D, SHAFEI B. Performance of concrete-filled steel tube bridge columns subjected to vehicle collision [J]. Journal of Bridge Engineering, 2019, 24(8): 04019074. doi: 10.1061/(ASCE)BE.1943-5592.0001439
    [14] DO T V, PHAM T M, HAO H. Impact force profile and failure classification of reinforced concrete bridge columns against vehicle impact [J]. Engineering Structures, 2019, 183: 443 − 458. doi: 10.1016/j.engstruct.2019.01.040
    [15] JONES N. Structural Impact [M]. Cambridge UK: Cambridge University Press, Cambridge, 1997.
    [16] LI H, CHEN W, PHAM T M, et al. Analytical and numerical studies on impact force profile of RC beam under drop weight impact [J]. International Journal of Impact Engineering, 2021, 147: 103743. doi: 10.1016/j.ijimpeng.2020.103743
    [17] MALVAR L J, CRAWFORD J E. Dynamic increase factors for concrete [C]. Orlando: 28th DDESB Seminar, 1998.
    [18] LI R W, WU H, YANG Q T, et al. Vehicular impact resistance of seismic designed RC bridge piers [J]. Engineering Structures, 2020, 220: 111015. doi: 10.1016/j.engstruct.2020.111015
    [19] 康昌敏, 王蕊, 朱翔. 轴压比对钢管混凝土柱侧向冲击性能影响研究[J]. 工程力学, 2020, 37(增刊 1): 254 − 260. doi: 10.6052/j.issn.1000-4750.2019.04.S047

    KANG Changmin, WANG Rui, ZHU Xiang. The influence of axial compression ratio on the lateral impact performance of concrete filled steel tube columns [J]. Engineering Mechanics, 2020, 37(Suppl 1): 254 − 260. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S047
    [20] 李佳奇, 王蕊, 赵晖, 等. 外包不锈钢中空夹层钢管混凝土柱耐火性能研究[J]. 工程力学, 2020, 37(10): 125 − 133. doi: 10.6052/j.issn.1000-4750.2019.11.0679

    LI Jiaqi, WANG Rui, ZHAO Hui, et al. Study on the fire performance of concrete-filled double-skin tubular columns with external stainless steel tubes [J]. Engineering Mechanics, 2020, 37(10): 125 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0679
    [21] 安国青, 赵晖, 王蕊, 等. 外包不锈钢圆中空夹层钢管混凝土柱抗撞计算方法研究[J]. 工程力学, 2021, 38(6): 227 − 236. doi: 10.6052/j.issn.1000-4750.2020.11.0823

    AN Guoqing, ZHAO Hui, WANG Rui, et al. Calculation method for impact resistance of circular concrete-filled double-skin tubular columns with external stainless steel tube [J]. Engineering Mechanics, 2021, 38(6): 227 − 236. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0823
    [22] 王蕊. 钢管混凝土结构构件在侧向撞击下动力响应及其损伤破坏的研究[D]. 太原: 太原理工大学, 2008.

    WANG Rui. Studies on the dynamic response and damage failure of concrete filled steel tube under lateral impact [D]. Taiyuan: Taiyuan University of Technology, 2008. (in Chinese)
    [23] 侯川川. 低速横向冲击荷载下圆钢管混凝土构件的力学性能研究[D]. 北京: 清华大学, 2012.

    HOU Chuanchuan. Study on performance of circular Concrete-filled Steel Tubular (CFST) members under low velocity transverse impact [D]. Beijing: Tsinghua University, 2012. (in Chinese)
    [24] ZHAO H, WANG R, HOU C C, et al. Performance of circular CFDST members with external stainless steel tube under transverse impact loading [J]. Thin-Walled Structures, 2019, 145: 106380. doi: 10.1016/j.tws.2019.106380
    [25] IVORY M A. Crash test report for perimeter barriers and gates tested to SD-STD-02.01, Revision A. Test report No. TR-P25039-02-NC [R]. Adelanto: KARCO Engineering, LLC, 2005.
    [26] SUN W, FAN W, YANG C, et al. Lessons learned from vehicle collision accident of Dongguofenli Bridge: FE modeling and analysis [J]. Engineering Structures, 2021, 244: 112813. doi: 10.1016/j.engstruct.2021.112813
    [27] BUTH C E, BRACKIN M S, WILLIAMS W F, et al. Collision loads on bridge piers: phase 2, Report of guidelines for designing bridge piers and abutments for vehicle collisions [R]. Texas: Texas Transportation Institute Proving Ground, 2011.
    [28] AASHTO. AASHTO LRFD Bridge Design Specifications, Eighth Edition [S]. Washington, DC: American Association of State Highway and Transportation Officials, 2017.
    [29] ABDELKARIM O I, ELGAWADY M A. Performance of bridge piers under vehicle collision [J]. Engineering Structures, 2017, 140: 337 − 352. doi: 10.1016/j.engstruct.2017.02.054
    [30] HENG K, LI R, LI Z, et al. Dynamic responses of highway bridge subjected to heavy truck impact [J]. Engineering structures, 2021, 232: 111828. doi: 10.1016/j.engstruct.2020.111828
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  495
  • HTML全文浏览量:  97
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-04-08
  • 网络出版日期:  2022-04-23
  • 刊出日期:  2023-09-06

目录

    /

    返回文章
    返回