留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于节段模型测振试验的大跨度桥梁抖振响应预测

苏益 狄谨 李志国 李少鹏 秦凤江

苏益, 狄谨, 李志国, 李少鹏, 秦凤江. 基于节段模型测振试验的大跨度桥梁抖振响应预测[J]. 工程力学, 2023, 40(6): 182-192. doi: 10.6052/j.issn.1000-4750.2021.11.0896
引用本文: 苏益, 狄谨, 李志国, 李少鹏, 秦凤江. 基于节段模型测振试验的大跨度桥梁抖振响应预测[J]. 工程力学, 2023, 40(6): 182-192. doi: 10.6052/j.issn.1000-4750.2021.11.0896
SU Yi, DI Jin, LI Zhi-guo, LI Shao-peng, QIN Feng-jiang. PREDICTION OF BUFFETING RESPONSE OF LONG-SPAN BRIDGES BASED ON SECTIONAL MODEL VIBRATION TEST[J]. Engineering Mechanics, 2023, 40(6): 182-192. doi: 10.6052/j.issn.1000-4750.2021.11.0896
Citation: SU Yi, DI Jin, LI Zhi-guo, LI Shao-peng, QIN Feng-jiang. PREDICTION OF BUFFETING RESPONSE OF LONG-SPAN BRIDGES BASED ON SECTIONAL MODEL VIBRATION TEST[J]. Engineering Mechanics, 2023, 40(6): 182-192. doi: 10.6052/j.issn.1000-4750.2021.11.0896

基于节段模型测振试验的大跨度桥梁抖振响应预测

doi: 10.6052/j.issn.1000-4750.2021.11.0896
基金项目: 国家自然科学基金项目(51978108,51878580);中央高校基本业务费项目(2020CDJ-LHZZ-016,2021CDJQY-025)
详细信息
    作者简介:

    苏 益(1992−),男,黑龙江人,助理研究员,博士,主要从事桥梁结构风荷载及风致响应研究(E-mail: suyi8@my.swjtu.edu.cn)

    李志国(1977−),男,山东人,高工,博士,硕导,主要从事桥梁结构风荷载及风致响应研究(E-mail: lizhiguo@swjtu.edu.cn)

    李少鹏(1986−),男,河北人,副教授,博士,博导,主要从事桥梁结构风荷载及风致响应研究(E-mail: lishaopeng0314@163.com)

    秦凤江(1983−),男,辽宁人,副研究员,博士,硕导,主要从事桥梁结构研究(E-mail: qinfengjiang@cqu.edu.cn)

    通讯作者:

    狄 谨(1972−),男,湖南人,教授,博士,博导,主要从事钢结构与组合结构桥梁基本理论与应用研究(E-mail: dijin@cqu.edu.cn)

  • 中图分类号: U441+.3

PREDICTION OF BUFFETING RESPONSE OF LONG-SPAN BRIDGES BASED ON SECTIONAL MODEL VIBRATION TEST

  • 摘要: 传统大跨度桥梁抖振响应计算是基于颤抖振理论,并借助节段模型测压或测力试验进行,目前鲜有通过节段模型测振试验实现桥梁抖振响应预测的报道。基于抖振分析理论推导了考虑三维效应的两波数抖振力,并根据综合传递函数的概念提出了基于节段模型测振试验的大跨度桥梁抖振响应预测方法。以某流线型箱梁悬索桥为例,通过节段模型及全桥气弹模型试验研究了该预测方法的精度及可行性。结果表明:结构展宽比对综合传递函数识别精度存在影响,展宽比越大,识别精度越高。即使在湍流积分尺度并未远大于结构宽度的前提下,增大模型展宽比可有效减弱三维效应的影响。基于节段模型测振试验识别综合传递函数的方法可用于大跨度桥梁抖振响应的预测,该方法预测结果偏于保守。
  • 图  1  新田长江大桥总体布置图 /m

    Figure  1.  General layout drawing of Xintian Yangtze River Bridge

    图  2  主梁标准横断面图 /m

    Figure  2.  Standard cross-section of the main beam

    图  3  各湍流场纵向脉动风速谱

    Figure  3.  Longitudinal fluctuating wind speed spectrum of each turbulence field

    图  4  各湍流场竖向脉动风速谱

    Figure  4.  Vertical fluctuating wind speed spectrum of each turbulence field

    图  5  测振装置整体效果图

    Figure  5.  Overall effect diagram of vibration measuring device

    图  6  各不同展宽比流线型箱梁节段模型测振试验

    Figure  6.  Sectional model vibration test of streamlined box girder with different aspect ratios

    图  7  节段模型试验结构抖振响应

    Figure  7.  Structural buffeting response in sectional model test

    图  8  不同展宽比结构综合传递函数

    Figure  8.  Integrated transfer function of structures with different aspect ratios

    图  9  全桥气弹模型试验

    Figure  9.  Full-bridge aeroelastic model test

    图  10  结构抖振响应结果

    Figure  10.  Buffeting response results of the structure

    表  1  湍流特性参数

    Table  1.   Turbulence characteristic parameters

    湍流场湍流强度/(%)湍流积分尺度/m
    ${I_{\rm{u}}}$${I_{\rm{w}}}$${L_{\rm{u}}}$${L_{\rm{w}}}$
    XNJD-1尖塔14.212.330.1530.092
    XNJD-3尖塔-B15.711.301.4980.650
    XNJD-3尖塔-D23.016.701.0510.408
    下载: 导出CSV

    表  2  节段模型试验结构模态测试结果

    Table  2.   Structural modal test results in sectional model tests

    振型实桥频率/Hz模型设计频率/Hz模型实测频率/Hz频率误差/(%)阻尼比
    V-10.16482.9482.9161.090.0019
    V-20.23044.1224.0102.720.0017
    V-30.34266.1296.2311.660.0023
    注:V代表结构竖向(Vertical)模态。
    下载: 导出CSV

    表  3  全桥气弹模型试验结构模态测试结果

    Table  3.   Structural modal in full-bridge aeroelastic model tests

    振型实桥频率/Hz模型设计频率/Hz模型实测频率/Hz频率误差/(%)阻尼比
    V-10.16481.6481.599−2.970.0046
    V-20.23042.3042.167−5.950.0033
    V-30.34263.4263.278−4.320.0039
    下载: 导出CSV

    表  4  抖振响应均方根

    Table  4.   Root mean square of buffeting response

    湍流场预测值/m试验值/m误差/(%)
    XNJD-3尖塔-B0.2680.21723.65
    XNJD-3尖塔-D0.2910.25315.03
    下载: 导出CSV
  • [1] DAVENPORT A G. The response of slender, line-like structures to a gusty wind [J]. Proceedings of the Institution of Civil Engineers, 1962, 23(3): 389 − 408. doi: 10.1680/iicep.1962.10876
    [2] DAVENPORT A G. Buffetting of a suspension bridge by storm winds [J]. Journal of the Structural Division, 1962, 88(3): 233 − 270. doi: 10.1061/JSDEAG.0000773
    [3] SCANLAN R H. The action of flexible bridges under wind, I: Flutter theory [J]. Journal of Sound and Vibration, 1978, 60(2): 187 − 199. doi: 10.1016/S0022-460X(78)80028-5
    [4] SCANLAN R H. The action of flexible bridges under wind, II: Buffeting theory [J]. Journal of Sound and Vibration, 1978, 60(2): 201 − 211. doi: 10.1016/S0022-460X(78)80029-7
    [5] 郭薇薇, 蔡保硕, 娄亚烽, 等. 某大跨度公铁两用桁架斜拉桥车桥系统三分力系数风洞试验研究[J]. 工程力学, 2021, 38(3): 192 − 201. doi: 10.6052/j.issn.1000-4750.2020.05.0306

    GUO Weiwei, CAI Baoshuo, LOU Yafeng, et al. Wind tunnel test on tri-component force coefficients of the train-bridge system for a long-span rail-cum-road cable-stayed truss bridge [J]. Engineering Mechanics, 2021, 38(3): 192 − 201. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0306
    [6] 刘慧杰, 陈帅, 刘小兵. 并列双钝体箱梁气动力的干扰机理研究[J]. 工程力学, 2020, 37(增刊): 224 − 228. doi: 10.6052/j.issn.1000-4750.2019.04.S041

    LIU Huijie, CHEN Shuai, LIU Xiaobing. The aerodynamic interference mechanism of box girders with parallel double bluff bodies [J]. Engineering Mechanics, 2020, 37(Suppl): 224 − 228. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S041
    [7] SU Y, LI M S. Integrated transfer function for buffeting response evaluation of long-span bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 189: 231 − 242.
    [8] 苏益. 基于综合传递函数的大跨度桥梁抖振响应分析及预测方法研究[D]. 成都: 西南交通大学, 2020.

    SU Yi. Study on buffeting response analysis and prediction method of long-span bridges based on integrated transfer function [D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [9] LI M S, YANG Y, LI M, et al. Direct measurement of the Sears function in turbulent flow [J]. Journal of Fluid Mechanics, 2018, 847: 768 − 785. doi: 10.1017/jfm.2018.351
    [10] LI M, LI M S, ZHONG Y Z, et al. Buffeting response evaluation of long-span bridges with emphasis on the three-dimensional effects of gusty winds [J]. Journal of Sound and Vibration, 2019, 439: 156 − 172. doi: 10.1016/j.jsv.2018.09.057
    [11] SU Y, DI J, ZUO T Z, et al. Buffeting response evaluation of slender linear structures considering the influence of the aspect ratio on the scale effect [J]. Journal of Sound and Vibration, 2022, 530: 116969. doi: 10.1016/j.jsv.2022.116969
    [12] 刘小兵, 张海东, 王彦彪. 宽高比为5的矩形断面梁气动力展向相关性研究[J]. 工程力学, 2015, 32(增刊): 50 − 54. doi: 10.6052/j.issn.1000-4750.2014.05.S007

    LIU Xiaobing, ZHANG Haidong, WANG Yanbiao. Study on spanwise correlation of aerodynamic force of rectangular cylinder with aspect ratio 5 [J]. Engineering Mechanics, 2015, 32(Suppl): 50 − 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.S007
    [13] 李少鹏, 李明水, 马存明. 矩形断面抖振力展向相关性的试验研究[J]. 工程力学, 2016, 33(1): 39 − 46. doi: 10.6052/j.issn.1000-4750.2014.05.0458

    LI Shaopeng, LI Mingshui, MA Cunming. Experimental investigation of the span-wise correlation of buffeting forces on a rectangular section [J]. Engineering Mechanics, 2016, 33(1): 39 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.0458
    [14] JACKSON R, GRAHAM J M R, MAULL D J. The lift on a wing in a turbulent flow [J]. Aeronautical Quarterly, 1973, 24(3): 155 − 166. doi: 10.1017/S0001925900006569
    [15] LI S P, LI M S, LAROSE G L. Aerodynamic admittance of streamlined bridge decks [J]. Journal of Fluids and Structures, 2018, 78: 1 − 23. doi: 10.1016/j.jfluidstructs.2017.12.014
    [16] MASSARO M, GRAHAM J M R. The effect of three-dimensionality on the aerodynamic admittance of thin sections in free stream turbulence [J]. Journal of Fluids and Structures, 2015, 57: 81 − 90. doi: 10.1016/j.jfluidstructs.2015.05.012
    [17] CHEN X Z, KAREEM A. Equivalent static wind loads for buffeting response of bridges [J]. Journal of Structural Engineering, 2001, 127(12): 1467 − 1475. doi: 10.1061/(ASCE)0733-9445(2001)127:12(1467)
    [18] JTG/T 3360-01−2018, 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社, 2019.

    JTG/T 3360-01−2018, Wind-resistant design specification for highway bridges [S]. Beijing: China Communications Press, 2019. (in Chinese)
    [19] LI M, LI M S, SUN Y G. Effects of turbulence integral scale on the buffeting response of a long-span suspension bridge [J]. Journal of Sound and Vibration, 2021, 490: 115721. doi: 10.1016/j.jsv.2020.115721
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  33
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 修回日期:  2022-05-23
  • 网络出版日期:  2022-09-15
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回