PREDICTION OF BUFFETING RESPONSE OF LONG-SPAN BRIDGES BASED ON SECTIONAL MODEL VIBRATION TEST
-
摘要: 传统大跨度桥梁抖振响应计算是基于颤抖振理论,并借助节段模型测压或测力试验进行,目前鲜有通过节段模型测振试验实现桥梁抖振响应预测的报道。基于抖振分析理论推导了考虑三维效应的两波数抖振力,并根据综合传递函数的概念提出了基于节段模型测振试验的大跨度桥梁抖振响应预测方法。以某流线型箱梁悬索桥为例,通过节段模型及全桥气弹模型试验研究了该预测方法的精度及可行性。结果表明:结构展宽比对综合传递函数识别精度存在影响,展宽比越大,识别精度越高。即使在湍流积分尺度并未远大于结构宽度的前提下,增大模型展宽比可有效减弱三维效应的影响。基于节段模型测振试验识别综合传递函数的方法可用于大跨度桥梁抖振响应的预测,该方法预测结果偏于保守。Abstract: The traditional buffeting response calculation of long-span bridge structures is based on the flutter and buffeting theory, which is conducted by means of sectional model pressure or force measurement test. At present, there is no report on the prediction of buffeting response of long-span bridges through sectional model vibration test. Based on the buffeting analysis theory, the two-wavenumber buffeting force considering the three-dimensional effect is derived. The prediction method of the long-span bridge buffeting response based on the sectional model vibration test is proposed based on the concept of integrated transfer function. Taking a suspension bridge with streamlined box girder as an example, the accuracy and feasibility of the prediction method are investigated through wind tunnel tests of a sectional model and a full-bridge aeroelastic model. The results show that the structural aspect ratio has a certain influence on the identification accuracy of the integrated transfer function. A larger aspect ratio leads to a higher identification accuracy of the integrated transfer function. Even if the turbulence integral scale is not much larger than the structure width, increasing the model aspect ratio can effectively reduce the influence of the three-dimensional effect. The method of identifying the integrated transfer function through the sectional model vibration test can be used to predict the buffeting response of long-span bridges with conservative prediction results.
-
表 1 湍流特性参数
Table 1. Turbulence characteristic parameters
湍流场 湍流强度/(%) 湍流积分尺度/m ${I_{\rm{u}}}$ ${I_{\rm{w}}}$ ${L_{\rm{u}}}$ ${L_{\rm{w}}}$ XNJD-1尖塔 14.2 12.33 0.153 0.092 XNJD-3尖塔-B 15.7 11.30 1.498 0.650 XNJD-3尖塔-D 23.0 16.70 1.051 0.408 表 2 节段模型试验结构模态测试结果
Table 2. Structural modal test results in sectional model tests
振型 实桥频率/Hz 模型设计频率/Hz 模型实测频率/Hz 频率误差/(%) 阻尼比 V-1 0.1648 2.948 2.916 1.09 0.0019 V-2 0.2304 4.122 4.010 2.72 0.0017 V-3 0.3426 6.129 6.231 1.66 0.0023 注:V代表结构竖向(Vertical)模态。 表 3 全桥气弹模型试验结构模态测试结果
Table 3. Structural modal in full-bridge aeroelastic model tests
振型 实桥频率/Hz 模型设计频率/Hz 模型实测频率/Hz 频率误差/(%) 阻尼比 V-1 0.1648 1.648 1.599 −2.97 0.0046 V-2 0.2304 2.304 2.167 −5.95 0.0033 V-3 0.3426 3.426 3.278 −4.32 0.0039 表 4 抖振响应均方根
Table 4. Root mean square of buffeting response
湍流场 预测值/m 试验值/m 误差/(%) XNJD-3尖塔-B 0.268 0.217 23.65 XNJD-3尖塔-D 0.291 0.253 15.03 -
[1] DAVENPORT A G. The response of slender, line-like structures to a gusty wind [J]. Proceedings of the Institution of Civil Engineers, 1962, 23(3): 389 − 408. doi: 10.1680/iicep.1962.10876 [2] DAVENPORT A G. Buffetting of a suspension bridge by storm winds [J]. Journal of the Structural Division, 1962, 88(3): 233 − 270. doi: 10.1061/JSDEAG.0000773 [3] SCANLAN R H. The action of flexible bridges under wind, I: Flutter theory [J]. Journal of Sound and Vibration, 1978, 60(2): 187 − 199. doi: 10.1016/S0022-460X(78)80028-5 [4] SCANLAN R H. The action of flexible bridges under wind, II: Buffeting theory [J]. Journal of Sound and Vibration, 1978, 60(2): 201 − 211. doi: 10.1016/S0022-460X(78)80029-7 [5] 郭薇薇, 蔡保硕, 娄亚烽, 等. 某大跨度公铁两用桁架斜拉桥车桥系统三分力系数风洞试验研究[J]. 工程力学, 2021, 38(3): 192 − 201. doi: 10.6052/j.issn.1000-4750.2020.05.0306GUO Weiwei, CAI Baoshuo, LOU Yafeng, et al. Wind tunnel test on tri-component force coefficients of the train-bridge system for a long-span rail-cum-road cable-stayed truss bridge [J]. Engineering Mechanics, 2021, 38(3): 192 − 201. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0306 [6] 刘慧杰, 陈帅, 刘小兵. 并列双钝体箱梁气动力的干扰机理研究[J]. 工程力学, 2020, 37(增刊): 224 − 228. doi: 10.6052/j.issn.1000-4750.2019.04.S041LIU Huijie, CHEN Shuai, LIU Xiaobing. The aerodynamic interference mechanism of box girders with parallel double bluff bodies [J]. Engineering Mechanics, 2020, 37(Suppl): 224 − 228. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S041 [7] SU Y, LI M S. Integrated transfer function for buffeting response evaluation of long-span bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 189: 231 − 242. [8] 苏益. 基于综合传递函数的大跨度桥梁抖振响应分析及预测方法研究[D]. 成都: 西南交通大学, 2020.SU Yi. Study on buffeting response analysis and prediction method of long-span bridges based on integrated transfer function [D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese) [9] LI M S, YANG Y, LI M, et al. Direct measurement of the Sears function in turbulent flow [J]. Journal of Fluid Mechanics, 2018, 847: 768 − 785. doi: 10.1017/jfm.2018.351 [10] LI M, LI M S, ZHONG Y Z, et al. Buffeting response evaluation of long-span bridges with emphasis on the three-dimensional effects of gusty winds [J]. Journal of Sound and Vibration, 2019, 439: 156 − 172. doi: 10.1016/j.jsv.2018.09.057 [11] SU Y, DI J, ZUO T Z, et al. Buffeting response evaluation of slender linear structures considering the influence of the aspect ratio on the scale effect [J]. Journal of Sound and Vibration, 2022, 530: 116969. doi: 10.1016/j.jsv.2022.116969 [12] 刘小兵, 张海东, 王彦彪. 宽高比为5的矩形断面梁气动力展向相关性研究[J]. 工程力学, 2015, 32(增刊): 50 − 54. doi: 10.6052/j.issn.1000-4750.2014.05.S007LIU Xiaobing, ZHANG Haidong, WANG Yanbiao. Study on spanwise correlation of aerodynamic force of rectangular cylinder with aspect ratio 5 [J]. Engineering Mechanics, 2015, 32(Suppl): 50 − 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.S007 [13] 李少鹏, 李明水, 马存明. 矩形断面抖振力展向相关性的试验研究[J]. 工程力学, 2016, 33(1): 39 − 46. doi: 10.6052/j.issn.1000-4750.2014.05.0458LI Shaopeng, LI Mingshui, MA Cunming. Experimental investigation of the span-wise correlation of buffeting forces on a rectangular section [J]. Engineering Mechanics, 2016, 33(1): 39 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.0458 [14] JACKSON R, GRAHAM J M R, MAULL D J. The lift on a wing in a turbulent flow [J]. Aeronautical Quarterly, 1973, 24(3): 155 − 166. doi: 10.1017/S0001925900006569 [15] LI S P, LI M S, LAROSE G L. Aerodynamic admittance of streamlined bridge decks [J]. Journal of Fluids and Structures, 2018, 78: 1 − 23. doi: 10.1016/j.jfluidstructs.2017.12.014 [16] MASSARO M, GRAHAM J M R. The effect of three-dimensionality on the aerodynamic admittance of thin sections in free stream turbulence [J]. Journal of Fluids and Structures, 2015, 57: 81 − 90. doi: 10.1016/j.jfluidstructs.2015.05.012 [17] CHEN X Z, KAREEM A. Equivalent static wind loads for buffeting response of bridges [J]. Journal of Structural Engineering, 2001, 127(12): 1467 − 1475. doi: 10.1061/(ASCE)0733-9445(2001)127:12(1467) [18] JTG/T 3360-01−2018, 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社, 2019.JTG/T 3360-01−2018, Wind-resistant design specification for highway bridges [S]. Beijing: China Communications Press, 2019. (in Chinese) [19] LI M, LI M S, SUN Y G. Effects of turbulence integral scale on the buffeting response of a long-span suspension bridge [J]. Journal of Sound and Vibration, 2021, 490: 115721. doi: 10.1016/j.jsv.2020.115721 -