INVESTIGATION ON LONGITUDINAL SHEAR BEHAVIOR AND BEARING CAPACITY OF PROFILED STEEL SHEETING AND ECC COMPOSITE SLABS
-
摘要: 通过2组8个压型钢板-高延性水泥基材料(ECC)组合楼板静力加载试验,研究上述试件破坏模式、承载力、刚度、应变分布及滑移等受力性能。试验结果表明:峰值荷载时,端部设置栓钉的压型钢板-ECC组合楼板试件滑移值较大,达到峰值荷载后,试件承载力下降平缓,表现为延性剪切破坏;而端部未设置栓钉的试件表现为脆性剪切破坏。分析了剪跨、压型钢板厚度、组合楼板截面高度及端部栓钉等因素对压型钢板-ECC组合楼板纵向剪切性能及剪切承载力影响规律。在试验研究基础上,分别基于欧洲规范(Eurocode-4)和组合楼板设计与施工规范(CECS273: 2010)的m-k法,提出适用于压型钢板-ECC组合楼板的纵向剪切承载力计算公式,经比较分析计算结果与试验结果吻合较好。Abstract: The static loading tests on the two groups of eight profiled steel sheeting and Engineered Cementitious Composite (ECC) slabs were conducted, and their failure mode, bearing capacity, stiffness, strain distributions and slip behavior were investigated. The test results show that: compared with the composite slabs specimens without end studs, the slip value of profiled steel sheeting and ECC composite slabs specimens with end studs is larger at peak load, after reaching the peak load, the bearing capacity of those specimens decreased gently, showing a ductile failure mode. In comparison, the composite slab specimens without end studs show a brittle failure mode. The effects of shear span, of profiled steel sheeting thickness, of composite slabs height, and of end studs on the longitudinal shear performance and on the bearing capacity of specimens were analyzed. According to the experimental results, the calculation method for the longitudinal shear capacity of profiled steel sheeting and ECC composite slabs was proposed based on the m-k method in Eurocode-4 and on Code CECS273:2010, respectively. The calculated results were in a good agreement with the experimental results.
-
Key words:
- profiled steel sheeting /
- ECC /
- composite slab /
- longitudinal shear property /
- bearing capacity
-
表 1 试件设计参数
Table 1. Design parameters of specimens
试件 Ln/mm h/mm t/mm b/mm Ls/mm 每端栓钉/个 ECSL1 1800 150 0.8 688 450 3 ECSL2 1800 150 1.2 688 450 3 ECSL3 1800 130 0.8 688 450 3 ECSL4 1800 150 0.8 688 450 − ECSS1 3200 150 0.8 688 800 3 ECSS2 3200 150 1.2 688 800 3 ECSS3 3200 130 0.8 688 800 3 ECSS4 3200 150 0.8 688 800 − 注:Ln为组合楼板净跨;h为组合楼板截面高度;t为压型钢板厚度;b为组合楼板宽度;Ls为组合楼板剪跨。 表 2 压型钢板力学性能
Table 2. Mechanical properties of profiled steel sheeting
压型钢板 屈服强度fy/MPa 抗拉强度fu/MPa 弹性模量E/(×105 MPa) 伸长率/(%) t-0.8 308.74 373.36 2.27 33 t-1.2 283.78 355.75 2.21 35 表 3 ECC配合比
Table 3. Mix proportion of ECC
水泥 粉煤灰 细砂 水 减水剂 1.00 1.50 1.62 0.90 0.025 表 4 试件特征点试验及计算结果
Table 4. The test results of characteristic points of specimens
试件 Pcr/kN δcr/mm Pm/kN δm/mm Sm/mm Pu/kN δu/mm Su/mm Mtest/(kN∙m) Mp/(kN∙m) Mtest/Mp 破坏类型 ECSL1 16.14 0.59 77.16 25.02 5.16 65.64 61.66 15.19 17.36 25.37 0.68 延性剪切 ECSL2 11.91 0.46 138.63 44.80 8.52 117.31 60.38 14.58 31.19 40.00 0.78 延性剪切 ECSL3 14.44 1.29 69.36 11.35 2.20 59.00 20.16 2.96 15.61 24.57 0.64 延性剪切 ECSL4 33.63 1.67 61.80 3.75 0.10 52.44 10.70 1.30 13.91 25.37 0.55 脆性剪切 ECSS1 12.80 9.44 36.71 25.01 0.09 31.18 78.41 11.42 14.68 25.37 0.58 延性剪切 ECSS2 14.40 9.36 52.56 46.46 3.28 46.38 86.32 11.08 21.02 40.00 0.53 延性剪切 ECSS3 12.47 5.84 33.34 54.99 5.96 28.34 78.43 11.13 13.34 24.57 0.54 延性剪切 ECSS4 10.83 3.23 32.93 13.23 0.01 27.98 26.49 0.62 13.17 25.37 0.52 脆性剪切 注:Pcr、δcr分别为试件开裂时的荷载、跨中挠度;Pm、δm、Sm分别为试件峰值状态时的荷载、跨中挠度、端部滑移;Pu、δu、Su分别为试件极限状态时的荷载、跨中挠度、端部滑移; Mtest、Mp分别为截面最大弯矩试验值和理论值。 表 5 纵向剪切承载力计算值与试验值比较
Table 5. Comparison of calculation results with test results
试件 Pt/kN Eurocode 4 CECS273:2010 Vt/kN Vt / Pt Vt/kN Vt / Pt ECSL1 38.58 34.20 0.886 35.23 0.913 ECSL2 69.32 57.90 0.835 58.74 0.847 ECSL3 34.68 28.09 0.810 28.94 0.834 ECSL4 30.90 34.20 1.107 35.23 1.140 ECSS1 18.36 13.46 0.734 14.65 0.798 ECSS2 26.28 26.80 1.020 27.88 1.061 ECSS3 16.67 11.06 0.663 12.03 0.722 ECSS4 16.47 13.46 0.818 14.65 0.890 平均值 − − 0.859 − 0.901 标准差 − − 0.135 − 0.129 注:Pt、Vt分别为试件纵向剪切承载力试验值与计算值,Pt= Pm/2。 -
[1] AARTHI K, JEYSHANKARAN E, ARANGANATHAN N. Comparative study on longitudinal shear resistance of light weight concrete composite slabs with profiled sheets [J]. Engineering Structures, 2019, 200: 109738.1 − 109738.8. [2] 聂建国, 易卫华. 压型钢板-混凝土组合楼板的受力性能及其计算[J]. 建筑结构, 2005, 35(1): 49 − 52.NIE Jianguo, YI Weihua. Bearing Capacity and Calculation Method of Profiled Steel Sheeting-concrete Composite Slabs [J]. Building Structures, 2005, 35(1): 49 − 52. (in Chinese) [3] 卜一之, 刘欣益, 张清华. 基于截面应力法的钢-UHPC组合板初裂荷载计算方法研究[J]. 工程力学, 2020, 37(10): 209 − 217. doi: 10.6052/j.issn.1000-4750.2019.12.0738BU Yizhi, LIU Xinyi, ZHANG Qinghua. Cracking load calculation for steel-UHPC composite slabs based on the section-stress method. [J]. Engineering Mechanics, 2020, 37(10): 209 − 217. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0738 [4] 史晓宇, 陈世鸣. 组合板剪切-粘结机理及承载能力试验[J]. 同济大学学报, 2012, 40(5): 666 − 672.SHI Xiaoyu, CHEN Shiming. Experimental investigation on shear-bond mechanism and strength of composite slabs with steel profiles [J]. Journal of Tongji University, 2012, 40(5): 666 − 672. (in Chinese) [5] 陈世鸣. 压型钢板-混凝土组合楼板承载能力研究[J]. 建筑结构学报, 2002, 23(3): 19 − 26. doi: 10.3321/j.issn:1000-6869.2002.03.004CHEN Shiming. Study of loading-carrying capacities of 3w-deck composite slabs [J]. Journal of Building Structures, 2002, 23(3): 19 − 26. (in Chinese) doi: 10.3321/j.issn:1000-6869.2002.03.004 [6] MOHAMMED B S, AL-GANAD M A, ABDULLAHI M. Analytical and experimental studies on composite slabs utilising palm oil clinker concrete [J]. Construction & Building Materials, 2011, 25(8): 3550 − 3560. [7] CIFUENTES H, MEDINA F. Experimental study on shear bond behavior of composite slabs according to Eurocode 4 [J]. Journal of Constructional Steel Research, 2013, 82: 99 − 110. doi: 10.1016/j.jcsr.2012.12.009 [8] SOHEL K M A, LIEW J Y R, FARES A I. Shear bond behavior of composite slabs with ultra-lightweight cementitious composite [J]. Journal of Building Engineering, 2021, 44: 103284. doi: 10.1016/j.jobe.2021.103284 [9] LI X, ZHENG X Y, ASHRAF M, et al. The longitudinal shear bond behavior of an innovative laminated fiber reinforced composite slab [J]. Construction and Building Materials, 2019, 215: 508 − 522. doi: 10.1016/j.conbuildmat.2019.04.153 [10] CHEN S. Load carrying capacity of composite slabs with various end constraints [J]. Journal of Constructional Steel Research, 2003, 59(3): 385 − 403. doi: 10.1016/S0143-974X(02)00034-2 [11] RANA M, UY B, MIRZA O. Experimental and numerical study of end anchorage in composite slabs [J]. Journal of Constructional Steel Research, 2015, 115: 372 − 386. doi: 10.1016/j.jcsr.2015.08.039 [12] MOHAMMED B S. Structural behavior and m-k value of composite slab utilizing concrete containing crumb rubber [J]. Construction & Building Materials, 2010, 24(7): 1214 − 1221. [13] 朱榆, 徐世烺. 超高韧性水泥基复合材料加固混凝土 三点弯曲梁断裂过程的研究[J]. 工程力学, 2011, 28(3): 69 − 77.ZHU Yu, XU Shilang. Study on facture process of concrete three-point bending beams retrofitted with UHTCC [J]. Engineering Mechanics, 2011, 28(3): 69 − 77. (in Chinese) [14] LI V C. Engineered Cementitious Composite(ECC)[M]. Berlin: Springer, 2019. [15] 阚黎黎, 章志, 张利, 等. 低成本PVA纤维对超高韧性水泥基复合材料力学性能的影响[J]. 工程力学, 2019, 36(11): 121 − 129. doi: 10.6052/j.issn.1000-4750.2018.11.0628KAN Lili, ZHANG Zhi, ZHANG Li, et al. Effect of low-cost PVA fibers on the mechanical properties of engineered cementitious composites [J]. Engineering Mechanics, 2019, 36(11): 121 − 129. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.11.0628 [16] 谢磊, 李庆华, 徐世烺. 超高韧性水泥基复合材料多次冲击压缩性能及本构关系[J]. 工程力学, 2021, 38(12): 158 − 171. doi: 10.6052/j.issn.1000-4750.2020.11.0860XIE Lei, LI Qinghua, XU Shilang. Multiple impact compressive properties and constitutive model of ultra-high toughness cementitious composites [J]. Engineering Mechanics, 2021, 38(12): 158 − 171. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0860 [17] 徐世烺, 王洪昌. 超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J]. 工程力学, 2008, 25(11): 53 − 61.XU Shilang, WANG Hongchang. Experimental study on bond-slip between ultra high toughness cementitious composites and steel bar [J]. Engineering Mechanics, 2008, 25(11): 53 − 61. (in Chinese) [18] FISCHER G, LI V C. Influence of matrix ductility on tension-stiffening behavior of steel reinforced engineered cementitious composites(ECC) [J]. ACI Structural Journal, 2002, 99(1): 104 − 111. [19] FISCHER G, LI V C. Effect of fiber reinforcement on the response of structural members [J]. Engineering Fracture Mechanics, 2007, 74(1): 258 − 272. [20] 白亮, 张淼, 杨磊, 等. 型钢高延性水泥基材料粘结性能试验研究与有限元分析[J]. 工程力学, 2021, 38(3): 98 − 111. doi: 10.6052/j.issn.1000-4750.2020.04.0265BAI Liang, ZHANG Miao, YANG Lei, et al. Experimental investigation and finite element modeling of interface bond-slip behavior between shape steel and ECC [J]. Engineering Mechanics, 2021, 38(3): 98 − 111. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0265 [21] RANA M M, LEE C K, AL-DEEN S. A study on the bond stress-slip behaviour between engineered cementitious composites and structural steel sections [C]. Copenhagen, Denmark: 8th European Conference on Steel and Composite Structures, 2017. [22] 明铭, 郑山锁, 郑淏, 等. 型钢高性能纤维混凝土粘结滑移性能试验研究[J]. 工程力学, 2020, 37(8): 148 − 157. doi: 10.6052/j.issn.1000-4750.2019.09.0555MING Ming, ZHENG Shansuo, ZHENG Hao, et al. Experimental study on bond-slip behavior between encased steel and high-performance-fiber concrete [J]. Engineering Mechanics, 2020, 37(8): 148 − 157. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0555 [23] MOHAMMED B S, ASWIN M, BEATTY W H, et al. Longitudinal shear resistance of PVA-ECC composite slabs [J]. Structures, 2016, 5: 247 − 257. doi: 10.1016/j.istruc.2015.12.003 [24] GB/T 228.1−2010, 金属材料拉伸试验第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2011.GB/T 228.1−2010, Metallic materials Tensile testing-Part 1: Method of test at room temperature [S]. Beijing: China standard press, 2011. (in Chinese) [25] JC/T 2461−2018, 高延性纤维增强水泥基复合材料力学性能试验方法[S]. 北京: 中国建材工业出版社, 2018.JC/T2461−2018, Standard test method for the mechanical properties of the ductile fiber reinforced cementitious composites [S]. Beijing: China Building Material Industry Publishing House, 2018. (in Chinese) [26] YU K Q, LI L Z, YU J T, et al. Direct tensile properties of engineered cementitious composites: A review [J]. Construction & Building Materials, 2018(165): 346 − 362. [27] 徐世烺, 李贺东. 超高韧性水泥基复合材料直接拉伸试验研究[J]. 土木工程学报, 2009, 42(9): 32 − 41. doi: 10.3321/j.issn:1000-131X.2009.09.005XU Shilang, LI Hedong. Uniaxial tensile experiments of ultra high toughness cementitious composite [J]. China Civil Engineering Journal, 2009, 42(9): 32 − 41. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.09.005 [28] HOU L J, XU S L, ZHANG X F. Shear behavior of reinforced ultrahigh toughness cementitious composite beams without transverse reinforcement [J]. Journal of Materials in Civil Engineering, 2012, 24: 1283 − 1294. doi: 10.1061/(ASCE)MT.1943-5533.0000505 [29] CECS273: 2010, 组合楼板设计与施工规范[S]. 北京: 中国计划出版社, 2010.CECS273: 2010, Code for composite slabs design and construction [S]. Beijing: China Planning Press, 2018. (in Chinese) [30] EN1994-1-1: 2004, Design of composite steel and concrete structures, Part 1-1: General rules and rules for buildings [S]. Brussels: European Committee for Standardization, 2004. [31] ABDULLAH R, EASTERLING W S. New evaluation and modeling procedure for horizontal shear bond incomposite slabs [J]. Journal of Constructional Steel Research, 2009, 65(4): 891 − 899. doi: 10.1016/j.jcsr.2008.10.009 [32] DEGTYAREV V V. Strength of composite slabs with end anchorages. Part II: Parametric studies [J]. Journal of Constructional Steel Research, 2014, 94: 163 − 175. doi: 10.1016/j.jcsr.2013.10.004 -