留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压型钢板-高延性水泥基材料组合楼板纵向剪切性能及承载力研究

白亮 张雨航 梁兴文 郑辉

白亮, 张雨航, 梁兴文, 郑辉. 压型钢板-高延性水泥基材料组合楼板纵向剪切性能及承载力研究[J]. 工程力学, 2023, 40(6): 172-181. doi: 10.6052/j.issn.1000-4750.2021.11.0895
引用本文: 白亮, 张雨航, 梁兴文, 郑辉. 压型钢板-高延性水泥基材料组合楼板纵向剪切性能及承载力研究[J]. 工程力学, 2023, 40(6): 172-181. doi: 10.6052/j.issn.1000-4750.2021.11.0895
BAI Liang, ZHANG Yu-hang, LIANG Xing-wen, ZHENG Hui. INVESTIGATION ON LONGITUDINAL SHEAR BEHAVIOR AND BEARING CAPACITY OF PROFILED STEEL SHEETING AND ECC COMPOSITE SLABS[J]. Engineering Mechanics, 2023, 40(6): 172-181. doi: 10.6052/j.issn.1000-4750.2021.11.0895
Citation: BAI Liang, ZHANG Yu-hang, LIANG Xing-wen, ZHENG Hui. INVESTIGATION ON LONGITUDINAL SHEAR BEHAVIOR AND BEARING CAPACITY OF PROFILED STEEL SHEETING AND ECC COMPOSITE SLABS[J]. Engineering Mechanics, 2023, 40(6): 172-181. doi: 10.6052/j.issn.1000-4750.2021.11.0895

压型钢板-高延性水泥基材料组合楼板纵向剪切性能及承载力研究

doi: 10.6052/j.issn.1000-4750.2021.11.0895
基金项目: 国家自然科学基金项目(51208058,51708035);陕西省自然科学基金项目(2022JM-242);陕西省教育厅青年创新团队项目(21JP006)
详细信息
    作者简介:

    张雨航(1997−),男,河北人,硕士生,主要从事组合结构研究(E-mail: a18713891617@163.com)

    梁兴文(1952−),男,陕西人,教授,硕士,主要从事结构工程研究(E-mail:liangxingwen2000@163.com)

    郑 辉(1998−),男,山东人,硕士生,主要从事新型纤维增强材料研究(E-mail: jazezheng@outlook.com)

    通讯作者:

    白 亮(1981−),男,陕西人,教授,博士,主要从事结构工程研究(E-mail:bailiang@chd.edu.cn)

  • 中图分类号: TU398+.9

INVESTIGATION ON LONGITUDINAL SHEAR BEHAVIOR AND BEARING CAPACITY OF PROFILED STEEL SHEETING AND ECC COMPOSITE SLABS

  • 摘要: 通过2组8个压型钢板-高延性水泥基材料(ECC)组合楼板静力加载试验,研究上述试件破坏模式、承载力、刚度、应变分布及滑移等受力性能。试验结果表明:峰值荷载时,端部设置栓钉的压型钢板-ECC组合楼板试件滑移值较大,达到峰值荷载后,试件承载力下降平缓,表现为延性剪切破坏;而端部未设置栓钉的试件表现为脆性剪切破坏。分析了剪跨、压型钢板厚度、组合楼板截面高度及端部栓钉等因素对压型钢板-ECC组合楼板纵向剪切性能及剪切承载力影响规律。在试验研究基础上,分别基于欧洲规范(Eurocode-4)和组合楼板设计与施工规范(CECS273: 2010)的m-k法,提出适用于压型钢板-ECC组合楼板的纵向剪切承载力计算公式,经比较分析计算结果与试验结果吻合较好。
  • 图  1  试件截面尺寸 /mm

    Figure  1.  Sectional dimension of specimens

    图  2  ECC拉伸试验

    Figure  2.  ECC tensile test

    图  3  加载装置示意图

    Figure  3.  Test loading devices

    图  4  测点布置

    Figure  4.  Layout of measuring points

    图  5  试件ECSL1破坏形态

    Figure  5.  Failure characteristics of ECSL1

    图  6  试件ECSS4破坏形态

    Figure  6.  Failure characteristics of ECSS4

    图  7  荷载-挠度曲线

    Figure  7.  Load-deflection curve

    图  8  荷载-滑移曲线

    Figure  8.  Load-slipping curve

    图  9  荷载-下翼缘压型钢板应变曲线

    Figure  9.  Load-lower flange profiled steel sheeting strain curve

    图  10  荷载-上翼缘压型钢板应变曲线

    Figure  10.  Load-upper flange profiled steel sheeting strain curve

    图  11  欧洲规范 (Eurocode 4)m-k

    Figure  11.  m-k method in Eurocode 4

    图  12  《组合楼板设计与施工规范》(CECS273: 2010) m-k

    Figure  12.  m–k method in CECS273:2010

    图  13  计算值与试验值比值的比较

    Figure  13.  Comparison of the ratio between calculation results with test results

    表  1  试件设计参数

    Table  1.   Design parameters of specimens

    试件Ln/mmh/mmt/mmb/mmLs/mm每端栓钉/个
    ECSL118001500.86884503
    ECSL218001501.26884503
    ECSL318001300.86884503
    ECSL418001500.8688450
    ECSS132001500.86888003
    ECSS232001501.26888003
    ECSS332001300.86888003
    ECSS432001500.8688800
    注:Ln为组合楼板净跨;h为组合楼板截面高度;t为压型钢板厚度;b为组合楼板宽度;Ls为组合楼板剪跨。
    下载: 导出CSV

    表  2  压型钢板力学性能

    Table  2.   Mechanical properties of profiled steel sheeting

    压型钢板屈服强度fy/MPa抗拉强度fu/MPa弹性模量E/(×105 MPa)伸长率/(%)
    t-0.8308.74373.362.2733
    t-1.2283.78355.752.2135
    下载: 导出CSV

    表  3  ECC配合比

    Table  3.   Mix proportion of ECC

    水泥粉煤灰细砂减水剂
    1.001.501.620.900.025
    下载: 导出CSV

    表  4  试件特征点试验及计算结果

    Table  4.   The test results of characteristic points of specimens

    试件Pcr/kNδcr/mmPm/kNδm/mmSm/mmPu/kNδu/mmSu/mmMtest/(kN∙m)Mp/(kN∙m)Mtest/Mp破坏类型
    ECSL116.140.5977.1625.025.1665.6461.6615.1917.3625.370.68延性剪切
    ECSL211.910.46138.6344.808.52117.3160.3814.5831.1940.000.78延性剪切
    ECSL314.441.2969.3611.352.2059.0020.162.9615.6124.570.64延性剪切
    ECSL433.631.6761.803.750.1052.4410.701.3013.9125.370.55脆性剪切
    ECSS112.809.4436.7125.010.0931.1878.4111.4214.6825.370.58延性剪切
    ECSS214.409.3652.5646.463.2846.3886.3211.0821.0240.000.53延性剪切
    ECSS312.475.8433.3454.995.9628.3478.4311.1313.3424.570.54延性剪切
    ECSS410.833.2332.9313.230.0127.9826.490.6213.1725.370.52脆性剪切
    注:Pcrδcr分别为试件开裂时的荷载、跨中挠度;PmδmSm分别为试件峰值状态时的荷载、跨中挠度、端部滑移;PuδuSu分别为试件极限状态时的荷载、跨中挠度、端部滑移; Mtest、Mp分别为截面最大弯矩试验值和理论值。
    下载: 导出CSV

    表  5  纵向剪切承载力计算值与试验值比较

    Table  5.   Comparison of calculation results with test results

    试件Pt/kNEurocode 4CECS273:2010
    Vt/kNVt / PtVt/kNVt / Pt
    ECSL138.5834.200.88635.230.913
    ECSL269.3257.900.83558.740.847
    ECSL334.6828.090.81028.940.834
    ECSL430.9034.201.10735.231.140
    ECSS118.3613.460.73414.650.798
    ECSS226.2826.801.02027.881.061
    ECSS316.6711.060.66312.030.722
    ECSS416.4713.460.81814.650.890
    平均值0.8590.901
    标准差0.1350.129
    注:PtVt分别为试件纵向剪切承载力试验值与计算值,Pt= Pm/2。
    下载: 导出CSV
  • [1] AARTHI K, JEYSHANKARAN E, ARANGANATHAN N. Comparative study on longitudinal shear resistance of light weight concrete composite slabs with profiled sheets [J]. Engineering Structures, 2019, 200: 109738.1 − 109738.8.
    [2] 聂建国, 易卫华. 压型钢板-混凝土组合楼板的受力性能及其计算[J]. 建筑结构, 2005, 35(1): 49 − 52.

    NIE Jianguo, YI Weihua. Bearing Capacity and Calculation Method of Profiled Steel Sheeting-concrete Composite Slabs [J]. Building Structures, 2005, 35(1): 49 − 52. (in Chinese)
    [3] 卜一之, 刘欣益, 张清华. 基于截面应力法的钢-UHPC组合板初裂荷载计算方法研究[J]. 工程力学, 2020, 37(10): 209 − 217. doi: 10.6052/j.issn.1000-4750.2019.12.0738

    BU Yizhi, LIU Xinyi, ZHANG Qinghua. Cracking load calculation for steel-UHPC composite slabs based on the section-stress method. [J]. Engineering Mechanics, 2020, 37(10): 209 − 217. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0738
    [4] 史晓宇, 陈世鸣. 组合板剪切-粘结机理及承载能力试验[J]. 同济大学学报, 2012, 40(5): 666 − 672.

    SHI Xiaoyu, CHEN Shiming. Experimental investigation on shear-bond mechanism and strength of composite slabs with steel profiles [J]. Journal of Tongji University, 2012, 40(5): 666 − 672. (in Chinese)
    [5] 陈世鸣. 压型钢板-混凝土组合楼板承载能力研究[J]. 建筑结构学报, 2002, 23(3): 19 − 26. doi: 10.3321/j.issn:1000-6869.2002.03.004

    CHEN Shiming. Study of loading-carrying capacities of 3w-deck composite slabs [J]. Journal of Building Structures, 2002, 23(3): 19 − 26. (in Chinese) doi: 10.3321/j.issn:1000-6869.2002.03.004
    [6] MOHAMMED B S, AL-GANAD M A, ABDULLAHI M. Analytical and experimental studies on composite slabs utilising palm oil clinker concrete [J]. Construction & Building Materials, 2011, 25(8): 3550 − 3560.
    [7] CIFUENTES H, MEDINA F. Experimental study on shear bond behavior of composite slabs according to Eurocode 4 [J]. Journal of Constructional Steel Research, 2013, 82: 99 − 110. doi: 10.1016/j.jcsr.2012.12.009
    [8] SOHEL K M A, LIEW J Y R, FARES A I. Shear bond behavior of composite slabs with ultra-lightweight cementitious composite [J]. Journal of Building Engineering, 2021, 44: 103284. doi: 10.1016/j.jobe.2021.103284
    [9] LI X, ZHENG X Y, ASHRAF M, et al. The longitudinal shear bond behavior of an innovative laminated fiber reinforced composite slab [J]. Construction and Building Materials, 2019, 215: 508 − 522. doi: 10.1016/j.conbuildmat.2019.04.153
    [10] CHEN S. Load carrying capacity of composite slabs with various end constraints [J]. Journal of Constructional Steel Research, 2003, 59(3): 385 − 403. doi: 10.1016/S0143-974X(02)00034-2
    [11] RANA M, UY B, MIRZA O. Experimental and numerical study of end anchorage in composite slabs [J]. Journal of Constructional Steel Research, 2015, 115: 372 − 386. doi: 10.1016/j.jcsr.2015.08.039
    [12] MOHAMMED B S. Structural behavior and m-k value of composite slab utilizing concrete containing crumb rubber [J]. Construction & Building Materials, 2010, 24(7): 1214 − 1221.
    [13] 朱榆, 徐世烺. 超高韧性水泥基复合材料加固混凝土 三点弯曲梁断裂过程的研究[J]. 工程力学, 2011, 28(3): 69 − 77.

    ZHU Yu, XU Shilang. Study on facture process of concrete three-point bending beams retrofitted with UHTCC [J]. Engineering Mechanics, 2011, 28(3): 69 − 77. (in Chinese)
    [14] LI V C. Engineered Cementitious Composite(ECC)[M]. Berlin: Springer, 2019.
    [15] 阚黎黎, 章志, 张利, 等. 低成本PVA纤维对超高韧性水泥基复合材料力学性能的影响[J]. 工程力学, 2019, 36(11): 121 − 129. doi: 10.6052/j.issn.1000-4750.2018.11.0628

    KAN Lili, ZHANG Zhi, ZHANG Li, et al. Effect of low-cost PVA fibers on the mechanical properties of engineered cementitious composites [J]. Engineering Mechanics, 2019, 36(11): 121 − 129. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.11.0628
    [16] 谢磊, 李庆华, 徐世烺. 超高韧性水泥基复合材料多次冲击压缩性能及本构关系[J]. 工程力学, 2021, 38(12): 158 − 171. doi: 10.6052/j.issn.1000-4750.2020.11.0860

    XIE Lei, LI Qinghua, XU Shilang. Multiple impact compressive properties and constitutive model of ultra-high toughness cementitious composites [J]. Engineering Mechanics, 2021, 38(12): 158 − 171. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0860
    [17] 徐世烺, 王洪昌. 超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J]. 工程力学, 2008, 25(11): 53 − 61.

    XU Shilang, WANG Hongchang. Experimental study on bond-slip between ultra high toughness cementitious composites and steel bar [J]. Engineering Mechanics, 2008, 25(11): 53 − 61. (in Chinese)
    [18] FISCHER G, LI V C. Influence of matrix ductility on tension-stiffening behavior of steel reinforced engineered cementitious composites(ECC) [J]. ACI Structural Journal, 2002, 99(1): 104 − 111.
    [19] FISCHER G, LI V C. Effect of fiber reinforcement on the response of structural members [J]. Engineering Fracture Mechanics, 2007, 74(1): 258 − 272.
    [20] 白亮, 张淼, 杨磊, 等. 型钢高延性水泥基材料粘结性能试验研究与有限元分析[J]. 工程力学, 2021, 38(3): 98 − 111. doi: 10.6052/j.issn.1000-4750.2020.04.0265

    BAI Liang, ZHANG Miao, YANG Lei, et al. Experimental investigation and finite element modeling of interface bond-slip behavior between shape steel and ECC [J]. Engineering Mechanics, 2021, 38(3): 98 − 111. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0265
    [21] RANA M M, LEE C K, AL-DEEN S. A study on the bond stress-slip behaviour between engineered cementitious composites and structural steel sections [C]. Copenhagen, Denmark: 8th European Conference on Steel and Composite Structures, 2017.
    [22] 明铭, 郑山锁, 郑淏, 等. 型钢高性能纤维混凝土粘结滑移性能试验研究[J]. 工程力学, 2020, 37(8): 148 − 157. doi: 10.6052/j.issn.1000-4750.2019.09.0555

    MING Ming, ZHENG Shansuo, ZHENG Hao, et al. Experimental study on bond-slip behavior between encased steel and high-performance-fiber concrete [J]. Engineering Mechanics, 2020, 37(8): 148 − 157. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0555
    [23] MOHAMMED B S, ASWIN M, BEATTY W H, et al. Longitudinal shear resistance of PVA-ECC composite slabs [J]. Structures, 2016, 5: 247 − 257. doi: 10.1016/j.istruc.2015.12.003
    [24] GB/T 228.1−2010, 金属材料拉伸试验第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2011.

    GB/T 228.1−2010, Metallic materials Tensile testing-Part 1: Method of test at room temperature [S]. Beijing: China standard press, 2011. (in Chinese)
    [25] JC/T 2461−2018, 高延性纤维增强水泥基复合材料力学性能试验方法[S]. 北京: 中国建材工业出版社, 2018.

    JC/T2461−2018, Standard test method for the mechanical properties of the ductile fiber reinforced cementitious composites [S]. Beijing: China Building Material Industry Publishing House, 2018. (in Chinese)
    [26] YU K Q, LI L Z, YU J T, et al. Direct tensile properties of engineered cementitious composites: A review [J]. Construction & Building Materials, 2018(165): 346 − 362.
    [27] 徐世烺, 李贺东. 超高韧性水泥基复合材料直接拉伸试验研究[J]. 土木工程学报, 2009, 42(9): 32 − 41. doi: 10.3321/j.issn:1000-131X.2009.09.005

    XU Shilang, LI Hedong. Uniaxial tensile experiments of ultra high toughness cementitious composite [J]. China Civil Engineering Journal, 2009, 42(9): 32 − 41. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.09.005
    [28] HOU L J, XU S L, ZHANG X F. Shear behavior of reinforced ultrahigh toughness cementitious composite beams without transverse reinforcement [J]. Journal of Materials in Civil Engineering, 2012, 24: 1283 − 1294. doi: 10.1061/(ASCE)MT.1943-5533.0000505
    [29] CECS273: 2010, 组合楼板设计与施工规范[S]. 北京: 中国计划出版社, 2010.

    CECS273: 2010, Code for composite slabs design and construction [S]. Beijing: China Planning Press, 2018. (in Chinese)
    [30] EN1994-1-1: 2004, Design of composite steel and concrete structures, Part 1-1: General rules and rules for buildings [S]. Brussels: European Committee for Standardization, 2004.
    [31] ABDULLAH R, EASTERLING W S. New evaluation and modeling procedure for horizontal shear bond incomposite slabs [J]. Journal of Constructional Steel Research, 2009, 65(4): 891 − 899. doi: 10.1016/j.jcsr.2008.10.009
    [32] DEGTYAREV V V. Strength of composite slabs with end anchorages. Part II: Parametric studies [J]. Journal of Constructional Steel Research, 2014, 94: 163 − 175. doi: 10.1016/j.jcsr.2013.10.004
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  78
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 修回日期:  2022-03-29
  • 录用日期:  2022-04-08
  • 网络出版日期:  2022-04-08
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回