RESEARCH ON DYNAMIC CHARACTERISTICS OF RUBBER ISOLATION PAD FOR COMPRESSOR UNDER DIFFERENT PRELOADS AND THERMAL OXYGEN AGING CONDITIONS
-
摘要: 揭示热氧老化条件下不同预载的隔振脚垫动态特性机理是空调器压缩机隔振系统匹配的关键所在。该文引入Peck模型表征热氧老化因子,并运用包含热氧老化因子的分数导数Kelvin-Voigt摄动模型和Coulomb摩擦摄动模型分别描述其频率依赖性和振幅依赖性,建立了考虑变预载影响的隔振脚垫热氧老化-动态特性模型。进一步辨识了不同预载条件下的模型参数,通过试验数据验证了模型的正确性,创新提出了刚度转变点和刚度转变频率的概念以更好地描述服役后变预载、变振幅工况下橡胶隔振脚垫的软化效应。为深入研究空调压缩机与隔振脚垫的刚度匹配与橡胶配方的优化设计奠定理论基础。Abstract: Revealing the dynamic characteristic mechanism of the rubber isolation pad (RIP) with different preloads and thermal oxygen aging conditions is the key to match the vibration isolation system of the air conditioner compressor. The Peck model is first introduced to characterize the thermal oxygen aging factor, and the fractional derivative Kelvin-Voigt perturbation model and the Coulomb friction perturbation model including the thermal oxygen aging factor are established to describe the frequency dependence and the amplitude dependence, respectively. The model for the thermal oxygen aging-dynamic characteristic of the RIP is built by considering the influence of variable preloads. The model parameters under different preloads are further identified, and the correctness of the model is verified by the experimental data. The concepts of stiffness transition points and stiffness transition frequencies are innovatively proposed to better describe the softening effect of the RIP under variable preload and amplitude conditions after service. These can lay a theoretical foundation for the in-depth study on the stiffness matching of an air conditioner compressor with the RIP and on the optimization design of rubber formula.
-
表 1 不同温度下热氧老化硬度变化5 HA的时间
Table 1. Thermal oxygen aging hardness change time of 5 HA at different temperatures
温度/(℃) 未老化 90 100 110 120 硬度/HA 32 37 37 37 37 老化时间/h − 216 96 48 24 表 2 热氧老化参数辨识
Table 2. Parameters identification of thermal oxygen aging
温度/(℃) 热加速系数C1/(×10−2 s−1) 摩尔气体常数R/(J·mol−1·K−1) 活化能Ea/(kJ·mol−1) 老化时间t/h 热氧老化因子μ 90 1.68 8.314 86.5 216 1.147 100 3.78 8.314 86.5 96 1.147 110 7.54 8.314 86.5 48 1.147 120 15.08 8.314 86.5 24 1.147 表 3 超弹性摄动模型及Coulomb摩擦摄动模型参数
Table 3. Parameters of Hyperelastic perturbation model and Coulomb friction perturbation model
参数 数值 参数 数值 Ke/(N·mm-1) 32 Kc/(N·mm-1) 式(18) Kmax/(N·mm-1) 45 Khe/(N·mm-1) 式(17) x2/mm 0.122 Ffmax/N 1.59 表 4 不同预载下分数导数摄动模型参数
Table 4. Fractional derivative perturbation model parameters under different preloads
预载/N 分数导数阶次α 阻尼参数b/(N·sα·mm−1) 材料参数γ 37 0.2015 10.78 0.6933 55 0.1980 11.78 0.6933 70 0.1887 13.00 0.6933 表 5 不同预载下热氧老化前、后动刚度损耗因子变化情况
Table 5. Changes in dynamic stiffness and loss factors before and after thermal oxygen aging under different preloads
预载/N 刚度转变频率/Hz 刚度转变频率前动刚度最大变化/(%) 刚度转变频率后动刚度最大变化/(%) 损耗因子最大变化/(%) 37 >100 +4.6 − −35.0 55 80 +9.3 −1.0 −25.7 70 50 +8.4 −1.0 −30.7 -
[1] HUANG X B, YE J, XIONG S S, et al. Automotive air conditioning compressor noise source identification method [J]. Applied Mechanics and Materials, 2015, 741: 397 − 400. doi: 10.4028/www.scientific.net/AMM.741.397 [2] 陈志勇, 毛阳, 史文库, 等. 汽车空调压缩机噪声异常问题的诊断与试验[J]. 振动. 测试与诊断, 2015, 35(6): 1063 − 1067, 1199.CHEN Zhiyong, MAO Yang, SHI Wenku, et al. Diagnosis and test of abnormal noise of automobile air-conditioning compressor [J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(6): 1063 − 1067, 1199. (in Chinese) [3] HE Q, WANG G, ZHANG Y, et al. Thermo-oxidative aging behavior of cerium oxide/silicone rubber [J]. Journal of Rare Earths, 2020, 38(4): 436 − 444. doi: 10.1016/j.jre.2019.05.002 [4] LOH S K, FARIS W F, HAMDI M, et al. Vibrational characteristic of piping system in air conditioning outdoor unit [J]. Science China Technological Sciences, 2011, 54(5): 1154 − 1168. doi: 10.1007/s11431-011-4360-x [5] 方文杰, 张肃. 冰箱振动 TPA 分析与隔振设计[J]. 噪声与振动控制, 2019, 39(6): 226 − 230. doi: 10.3969/j.issn.1006-1355.2019.06.040FANG Wenjie, ZHANG Su. Transfer path analysis of refrigerator vibration and isolation design [J]. Noise and Vibration Control, 2019, 39(6): 226 − 230. (in Chinese) doi: 10.3969/j.issn.1006-1355.2019.06.040 [6] 唐安特, 上官文斌, 潘孝勇, 等. 橡胶隔振器高频动态特性的计算方法[J]. 工程力学, 2020, 37(1): 230 − 238. doi: 10.6052/j.issn.1000-4750.2019.02.0059TANG Ante, SHANGGUAN Wenbin, PAN Xiaoyong, et al. Computational method for the dynamic properties of rubber isolators [J]. Engineering Mechanics, 2020, 37(1): 230 − 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.02.0059 [7] 吕振华, 上官文斌, 梁伟, 等. 液阻悬置动态特性试验方法及实测分析[J]. 中国机械工程, 2004(2): 90 − 94.LYU Zhenhua, SHANGGUAN Wenbin, LIANG Wei, et al. Experimental method and actual measurement analysis of dynamic characteristic of hydraulic resistance mount [J]. China Mechanical Engineering, 2004(2): 90 − 94. (in Chinese) [8] 李雪冰, 曹金凤, 危银涛, 等. 空气弹簧多变过程的有限元模拟[J]. 工程力学, 2019, 36(2): 224 − 228. doi: 10.6052/j.issn.1000-4750.2017.12.0925LI Xuebing, CAO Jinfeng, WEI Yintao, et al. Finite element modelling on polytropic process of air springs [J]. Engineering Mechanics, 2019, 36(2): 224 − 228. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0925 [9] 张广泰, 王明阳, 郭俏君, 等. 热氧老化下废旧叠层轮胎隔震垫恢复力模型[J]. 吉林大学学报(工学版), 2020: 1 − 11.ZHANG Guangtai, WANG Mingyang, GUO Qiaojun, et al. Scarp tire rubber pads’ practical restoring force model under the effect of thermal oxidation aging [J]. Journal of JiLin University (Engineering and Technology Edition), 2020: 1 − 11. (in Chinese) [10] CHEN J J, YIN Z H, RAKHEJA S, et al. Theoretical modelling and experimental analysis of the vertical stiffness of a convoluted air spring including the effect of the stiffness of the bellows [J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2018, 232(4): 547 − 561. doi: 10.1177/0954407017704589 [11] LIU Q, SHI W, CHEN Z. Natural environment degradation prediction of rubber and MPSO-based aging acceleration factor identification through the dispersion coefficient minimization method [J]. Polymer Testing, 2019, 77: 1 − 6. [12] LIU Q, SHI W, CHEN Z, et al. Rubber accelerated ageing life prediction by Peck model considering initial hardness influence [J]. Polymer Testing, 2018, 80: 1 − 10. [13] 吴杰, 上官文斌. 采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用[J]. 工程力学, 2008, 25(1): 161 − 166.WU Jie, SHANGGUAN Wenbin. Modeling and applications of dynamic characteristics for rubber isolators using viscoelastic fractional derivative model [J]. Engineering Mechanics, 2008, 25(1): 161 − 166. (in Chinese) [14] BERG M. A model for rubber springs in the dynamic analysis of rail vehicles [J]. Journal of Rail and Rapid Transit, Institute of Mechanical Engineers, 1997, 211: 95 − 108. doi: 10.1243/0954409971530941 [15] ISO 188-2011. Rubber, vulcanized or thermoplastic- accelerated aging and heat resistance tests [S]. Switzerland. International Standard Organization, 2011. [16] ISO 7619-1: 2010. Rubber, vulcanized or thermoplastic- determination of indentation hardness-Part 1: Durometer method (Shore hardness) [S]. Switzerland. International Standard Organization, 2010. [17] 胡小玲, 刘秀, 李明, 等. 炭黑填充橡胶超弹性本构模型的选取策略[J]. 工程力学, 2014, 31(5): 34 − 42. doi: 10.6052/j.issn.1000-4750.2012.12.0961HU Xiaoling, LIU Xiu, LI Ming, at al. Selection strategies of hyperelastic constitutive models for carbon black filled rubber [J]. Engineering Mechanics, 2014, 31(5): 34 − 42. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.12.0961 [18] 李显, 陈俊杰, 邱光琦, 等. 基于橡胶热氧老化规律的压缩机隔振脚垫动态特性研究[J]. 振动与冲击, 2022, 41(1): 271 − 278.LI Xian, CHEN Junjie, QIU Guangqi, at al. Dynamic characteristics of compressor vibration isolation pad based on rubber thermal oxygen aging law [J]. Journal of Vibration and Shock, 2022, 41(1): 271 − 278. (in Chinese) [19] 张平, 柴国钟, 潘孝勇, 等. 橡胶隔振器静态特性计算研究[J]. 振动、测试与诊断, 2010, 30(2): 105 − 110, 205. doi: 10.3969/j.issn.1004-6801.2010.02.001ZHANG Ping, CHAI Guozhong, PAN Xiaoyong, et al. Research on the calculation methods of the Static characteristic of rubber isolators [J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(2): 105 − 110, 205. (in Chinese) doi: 10.3969/j.issn.1004-6801.2010.02.001 [20] 陈俊杰, 郭孔辉, 殷智宏, 等. 囊式空气弹簧垂向刚度统一模型研究[J]. 机械工程学报, 2021, 57: 1 − 8.CHEN Junjie, GUO Konghui, YIN Zhihong, et al. Research on unified model of vertical stiffness for convoluted air spring [J]. Journal of Mechanical Engineering, 2021, 57: 1 − 8. (in Chinese) [21] 陈俊杰, 殷智宏, 何江华, 等. 带节流阻尼孔和附加气室的空气弹簧系统建模和动态特性研究[J]. 机械工程学报, 2017, 53(8): 166 − 174. doi: 10.3901/JME.2017.08.166CHEN Junjie, YIN Zhihong, HE Jianghua, et al. Study on modelling and dynamic characteristic of air spring with throttling damping orifice and auxiliary chamber [J]. Journal of Mechanical Engineering, 2017, 53(8): 166 − 174. (in Chinese) doi: 10.3901/JME.2017.08.166 [22] FERRY J D. Viscoelastic properties of polymer solutions [J]. Journal of Research of the National Bureau of Standards, 1948, 41(1): 53 − 62. doi: 10.6028/jres.041.008 -