留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自升式钻井平台桩靴贯入饱和砂土的机制研究

周子健 齐昌广 孔纲强 钟方涛 张智超 赖文杰

周子健, 齐昌广, 孔纲强, 钟方涛, 张智超, 赖文杰. 自升式钻井平台桩靴贯入饱和砂土的机制研究[J]. 工程力学, 2023, 40(6): 144-157. doi: 10.6052/j.issn.1000-4750.2021.11.0891
引用本文: 周子健, 齐昌广, 孔纲强, 钟方涛, 张智超, 赖文杰. 自升式钻井平台桩靴贯入饱和砂土的机制研究[J]. 工程力学, 2023, 40(6): 144-157. doi: 10.6052/j.issn.1000-4750.2021.11.0891
ZHOU Zi-jian, QI Chang-guang, KONG Gang-qiang, ZHONG Fang-tao, ZHANG Zhi-chao, LAI Wen-jie. RESEARCH ON MECHANISM OF JACK-UP DRILLING PLATFORM SPUDCAN PENETRATING INTO SATURATED SAND[J]. Engineering Mechanics, 2023, 40(6): 144-157. doi: 10.6052/j.issn.1000-4750.2021.11.0891
Citation: ZHOU Zi-jian, QI Chang-guang, KONG Gang-qiang, ZHONG Fang-tao, ZHANG Zhi-chao, LAI Wen-jie. RESEARCH ON MECHANISM OF JACK-UP DRILLING PLATFORM SPUDCAN PENETRATING INTO SATURATED SAND[J]. Engineering Mechanics, 2023, 40(6): 144-157. doi: 10.6052/j.issn.1000-4750.2021.11.0891

自升式钻井平台桩靴贯入饱和砂土的机制研究

doi: 10.6052/j.issn.1000-4750.2021.11.0891
基金项目: 浙江省自然科学基金项目(LY21E080007);国家自然科学基金项目(41977259);福建省自然资源科技创新项目(KY-090000-04-2021-003)
详细信息
    作者简介:

    周子健(1999−),男,浙江人,硕士生,主要从事基础工程、地基处理研究(E-mail: 1012036508@qq.com)

    孔纲强(1982−),男,浙江人,教授,博士,主要从事能源地下结构、透明土试验技术等方面的教学与科研工作研究(E-mail: gqkong1@163.com)

    钟方涛(1996−),男,浙江人,硕士生,主要从事基础工程、地基处理研究(E-mail: 497404941@qq.com)

    张智超(1986−),男,福建人,博士,主要从事边坡、挡土墙研究(E-mail: zhangzhichao0704@126.com)

    赖文杰(1994−),男,浙江人,硕士,主要从事基础工程、地基处理研究(E-mail: 497404941@qq.com)

    通讯作者:

    齐昌广(1986−),男,山东人,副教授,博士,主要从事基础工程、地基处理、透明土和岩土物理模拟试验等方面的教学与研究工作(E-mail: qichangguang@163.com)

  • 中图分类号: TU473

RESEARCH ON MECHANISM OF JACK-UP DRILLING PLATFORM SPUDCAN PENETRATING INTO SATURATED SAND

  • 摘要: 为研究桩靴贯入饱和砂土的承载机制以及桩靴周围砂土变形机理,开展桩靴的抗压承载土工模型试验以及桩靴-土体相互作用的透明土试验,测得了桩靴荷载-沉降变化规律、桩靴周围砂土的位移向量场和等值线图,初步探讨了桩靴贯入饱和砂土时的承载机制与桩靴周围砂土变形机理。基于圆孔扩张理论及分段位移迭代算法,推导出静载作用下桩靴荷载-沉降变化规律;与试验结果的对比发现:计算误差约为11.7%。通过浅应变路径法(SSPM)计算得到桩靴周围土体位移理论值;与试验结果对比发现:计算误差在16.7%~26.3%。
  • 图  1  桩靴抗压试验装置

    Figure  1.  Spudcan compression test device

    图  2  承载系统

    Figure  2.  Bearing system

    图  3  预制桩靴

    Figure  3.  Prefabricated spudcan

    图  4  熔融石英的颗粒级配

    Figure  4.  Particle size distribution of fused quartz

    图  5  透明性检测

    Figure  5.  Transparency detection

    图  6  桩靴透明土模型示意图

    Figure  6.  Schematic diagram of spudcan model experiment in transparent soil

    图  7  桩靴透明土试验

    Figure  7.  Spudcan experiment in transparent soil

    图  8  桩靴尺寸示意图

    Figure  8.  Schematic diagram of spudcan size

    图  9  荷载-沉降曲线

    Figure  9.  Load settlement curve

    图  10  桩身轴力

    Figure  10.  Axial force of pile shaft

    图  11  各级荷载作用下桩端阻力占桩顶荷载的比例

    Figure  11.  Ratio of pile end resistance to pile top load under various loads

    图  12  桩靴贯入密实砂(相对密实度为0.821)的位移向量图

    Figure  12.  Displacement vector diagram of supdcan penetrating dense sand (relative compaction is 0.821)

    图  13  桩靴贯入密实砂(相对密实度为0.930)的位移向量图

    Figure  13.  Displacement vector diagram of supdcan penetrating dense sand (relative compaction is 0.930)

    图  14  桩靴贯入中密砂(相对密实度为0.665)的位移向量图

    Figure  14.  Displacement vector diagram of supdcan penetrating medium dense sand (relative compaction is 0.665)

    图  15  桩靴贯入松散砂(相对密实度为0.231)的位移向量图

    Figure  15.  Displacement vector diagram of supdcan penetrating loose sand (relative compaction is 0.231)

    图  16  桩靴贯入密实砂至2.1R时水平位移归一化等值线

    Figure  16.  Normalized contour of horizontal displacement of spudcan penetrating dense sand to 2.1R

    图  17  桩靴贯入中密砂至2.1R时水平位移归一化等值线

    Figure  17.  Normalized contour of horizontal displacement of spudcan penetrating medium dense sand to 2.1R

    图  18  桩靴贯入松散砂至2.1R时水平位移归一化等值线

    Figure  18.  Normalized contour of horizontal displacement of spudcan penetrating loose dense sand to 2.1R

    图  19  圆孔扩张示意图

    注:$ {r_0} $为桩体半径;$ {r_{\text{u}}} $为圆孔扩张半径; $ {\sigma _r} $为法向应力;$ {\sigma _\theta } $为切向应力。

    Figure  19.  Schematic diagram of cavity expansion

    图  20  加压时桩靴-土体位移示意图

    注:$ {r_0} $为桩身半径;$ {r_1} $为桩靴最大半径;$ \alpha $为桩靴半桩尖角;$ {S_1} $为桩侧土体扩张水平位移;$ {S_2} $为竖直位移。

    Figure  20.  Schematic diagram of spudcan displacement under pressure

    图  21  平面AB受力分析

    Figure  21.  Force analysis of surface AB

    图  22  剪应移曲线[29]

    Figure  22.  Shear stress and displacement curve[29]

    图  23  迭代流程图

    Figure  23.  Iteration flow chart

    图  24  荷载沉降曲线实测值与理论值对比

    Figure  24.  Comparison between measured and theoretical load-settlement curve

    图  25  桩靴贯入至2.1R时各深度的水平向位移

    Figure  25.  Horizontal displacement at different depth caused by spudcan penetration to 2.1R

    表  1  砂土土性参数

    Table  1.   Parameters of sand

    密度/(kg·m−3)最小干密度/(kg·m−3)最大干密度/(kg·m−3)含水率/(%)相对密实度泊松比弹性模量/(MPa)摩擦角/(°)
    1.4411.3111.77828.020.3230.30.215
    下载: 导出CSV

    表  2  模型试验工况

    Table  2.   Model test conditions

    试验编号土样相对密实度贯入深度记录点
    T1 0.930 1.3R 2.1R
    T2 0.821 1.3R 2.1R
    T3 0.665 1.3R 2.1R
    T4 0.231 1.3R 2.1R
    下载: 导出CSV
  • [1] LEE K K. Investigation of potential spudcan punch-through failure on sand overlying clay soils [D]. Perth: University of Western Australia, 2009.
    [2] HU P, STANIER S A, WANG D, et al. Effect of footing shape on penetration in sand overlying clay [J]. International Journal of Physical Modelling in Geotechnics, 2016, 16(3): 119 − 133. doi: 10.1680/jphmg.15.00013
    [3] HU P, STANIER S A, CASSIDY M J, et al. Predicting peak resistance of spudcan penetrating sand overlying clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 248 − 256.
    [4] HU P, WANG D, CASSIDY M J, et al. Predicting the resistance profile of a spudcan penetrating sand overlying clay [J]. Canadian Geotechnical Journal, 2014, 51(10): 1151 − 1164. doi: 10.1139/cgj-2013-0374
    [5] HU P, WANG D, CASSIDY M J, et al. Assessing the punch-through hazard of a spudcan on sand overlying clay [J]. Geotechnique, 2015, 65(11): 883 − 896. doi: 10.1680/jgeot.14.P.097
    [6] MEYERHOF G G. Ultimate bearing capacity of footings on sand layer overlying clay [J]. Canadian Geotechnical Journal, 1974, 11(2): 223 − 229. doi: 10.1139/t74-018
    [7] MICHALOWSKI R. An estimate of the influence of soil weight on bearing capacity using limit analysis. [J]. Soils and Foundations, 1997, 37(4): 57 − 64. doi: 10.3208/sandf.37.4_57
    [8] 季春群, 孙春昌. 自升式平台地基承载力抗倾稳性及桩腿插深分析[J]. 上海交通大学学报, 1996, 30(3): 79 − 85.

    JI Chunqun, SUN Chunchang. Analysis of foundation bearing capacity, anti-dip stability and pile leg penetration of jack-up platform [J]. Journal of Shanghai Jiaotong University, 1996, 30(3): 79 − 85. (in Chinese)
    [9] 范怡飞, 王建华. 考虑桩靴贯入对邻近群桩效应影响的分析方法[J]. 岩土力学, 2020, 41(7): 2360 − 2368.

    FAN Yifei, WANG Jianhua. Method to analyze the effect of spudcan penetration on an adjacent pile group [J]. Rock and Soil Mechanics, 2020, 41(7): 2360 − 2368. (in Chinese)
    [10] YI J T, PAN Y T, QIU Z Z, et al. The post-installation consolidation settlement of jack-up spudcan foundations in clayey seabed soils [J]. Computers and Geotechnics, 2020, 123: 103611.
    [11] TANT K, CRAIG W H. Bearing capacity of circular foundations on soft clay of strength increasing with depth. [J]. Soils and Foundations, 1995, 35(4): 21 − 35. doi: 10.3208/sandf.35.4_21
    [12] HOSSAIN M S, HU Y, RANDOLPH M F, et al. Limiting cavity depth for spudcan foundations penetrating clay [J]. Géotechnique, 2005, 55(9): 679 − 690.
    [13] 王阳, 段梦兰, 韦卓, 等. 自升式钻井平台筒型桩靴试验研究[J]. 石油机械, 2015, 43(5): 67 − 71.

    WANG Yang, DUAN Menglan, WEI Zhuo, et al. A comparison of the penetration behavior of spudcan and caisson foundations of jack-up drilling platform [J]. China Petroleum Machinery, 2015, 43(5): 67 − 71. (in Chinese)
    [14] 王冬石, 袁烨, 徐文祥, 等. 非连续压载下黏土层中桩靴承载力变化规律[J]. 中国海上油气, 2018, 30(5): 145 − 150.

    WANG Dongshi, YUAN Hua, XU Wenxiang, et al. Variation law of bearing capacity of large spudcan in clay layer under discontinuous ballasting [J]. China Offshore Oil and Gas, 2018, 30(5): 145 − 150. (in Chinese)
    [15] VESIĆ A S. Expansion of cavity in infinite soil mass [J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(3): 265 − 289. doi: 10.1061/JSFEAQ.0001740
    [16] 张小玲, 赵景玖, 孙毅龙, 等. 基于圆孔扩张理论的桩基水平承载力计算方法[J]. 工程力学, 2021, 38(2): 232 − 241, 256. doi: 10.6052/j.issn.1000-4750.2020.04.0278

    ZHANG Xiaoling, ZHAO Jingjiu, SUN Yilong, et al. An analysis method for the horizontal bearing [J]. Engineering Mechanics, 2021, 38(2): 232 − 241, 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0278
    [17] BALIGH M M. Strain path method [J]. Journal of Geotechnical Engineering, 1985, 111(9): 1108 − 1136. doi: 10.1061/(ASCE)0733-9410(1985)111:9(1108)
    [18] SAGASETA C, WHITTLE A J. Prediction of ground movements due to pile driving in clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(1): 55 − 66. doi: 10.1061/(ASCE)1090-0241(2001)127:1(55)
    [19] HU Y, RANDOLPH M F. H-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformation [J]. Computers and Geotechnics, 1998, 23(1): 61 − 83.
    [20] 周健, 邓益兵, 叶建忠, 等. 砂土中静压桩沉桩过程试验研究与颗粒流模拟[J]. 岩土工程学报, 2009, 31(4): 501 − 507. doi: 10.3321/j.issn:1000-4548.2009.04.002

    ZHOU Jian, DENG Yibing, YE Jianzhong, et al. Experimental and numerical analysis of jacked piles during installation in sand [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 501 − 507. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.04.002
    [21] LEHANE B M, GILL D R. Displacement fields induced by penetrometer installation in an artificial soil [J]. International Journal of Physical Modelling in Geotechnics, 2004, 1(1): 25 − 36.
    [22] EZZEIN F M, BATHURST R J. A transparent sand for geotechnical laboratory Modeling [J]. Geotechnical Testing Journal, 2011, 34(6): 590 − 601.
    [23] 齐昌广, 陈永辉, 王新泉, 等. 细长桩屈曲的透明土物理模型试验研究[J]. 岩石力学与工程学报, 2015, 34(4): 838 − 848.

    QI Changguang, CHEN Yonghui, WANG Xinquan, et al. Physical modeling study on buckling of slender pile using transparent Soil [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 838 − 848. (in Chinese)
    [24] GUZMAN I L, ISKANDER M, SUESCUN-FLOREZ E, et al. A transparent aqueous-saturated sand surrogate for use in physical modeling [J]. Acta Geotechnica, 2014, 9(2): 187 − 206. doi: 10.1007/s11440-013-0247-2
    [25] 王鹏鹏, 郭晓霞, 桑勇, 等. 基于数字图像相关技术的砂土全场变形测量及其DEM数值模拟[J]. 工程力学, 2020, 37(1): 239 − 247. doi: 10.6052/j.issn.1000-4750.2019.02.0050

    WANG Pengpeng, GUO Xiaoxia, SANG Yong, et al. Full-field deformation measurement of sand using the digital image correlation technique and numerical simulation using the discrete element method [J]. Engineering Mechanics, 2020, 37(1): 239 − 247. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.02.0050
    [26] WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry(PIV) and photogrammetry [J]. Geotechnique, 2003, 53(7): 619 − 631. doi: 10.1680/geot.2003.53.7.619
    [27] 周航, 孔纲强, 刘汉龙. 基于圆孔扩张理论的静压楔形桩沉桩挤土效应研究[J]. 中国公路学报, 2014, 27(4): 24 − 30. doi: 10.3969/j.issn.1001-7372.2014.04.004

    ZHOU Hang, KONG Gangqiang, LIU Hanlong. Study on pile sinking compaction effect of hydrostatic wedge pile using cavity expansion theory [J]. China Journal of Highway and Transport, 2014, 27(4): 24 − 30. (in Chinese) doi: 10.3969/j.issn.1001-7372.2014.04.004
    [28] 郦建俊, 黄茂松, 王卫东, 等. 软土地基中扩底抗拔中长桩的极限承载力分析[J]. 岩土力学, 2009, 30(9): 2643 − 2650, 2666. doi: 10.3969/j.issn.1000-7598.2009.09.017

    LI Jianjun, HUANG Maosong, WANG Weidong, et al. Analysis of uplift capacity of long enlarged-base pile in soft soil ground [J]. Rock and Soil Mechanics, 2009, 30(9): 2643 − 2650, 2666. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.09.017
    [29] 刘方成, 尚守平, 王海东. 粉质黏土-混凝土接触面特性单剪试验研究[J]. 岩石力学与工程学报, 2011, 30(8): 1720 − 1728.

    LIU Fangcheng, SHANG Shouping, WANG Haidong. Study of shear properties of silty clay-concrete interface by simple shear tests [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1720 − 1728. (in Chinese)
    [30] 张乾青, 李术才, 李利平, 等. 考虑侧阻软化和端阻硬化的群桩沉降简化算法[J]. 岩石力学与工程学报, 2013, 32(3): 615 − 624.

    ZHANG Qianqing, LI Liping, CHEN Yunjuan, et al. Simplified method for settlement prediction of pile groups considering skin friction softing and end resistance hardening [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 615 − 624. (in Chinese)
  • 加载中
图(26) / 表(2)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  101
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-14
  • 修回日期:  2022-02-21
  • 录用日期:  2022-03-04
  • 网络出版日期:  2022-03-04
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回