留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转子-机舱组合体模型对海上风机结构特征频率和地震响应的影响

石世刚 翟恩地 许成顺 杜修力 孙毅龙

石世刚, 翟恩地, 许成顺, 杜修力, 孙毅龙. 转子-机舱组合体模型对海上风机结构特征频率和地震响应的影响[J]. 工程力学, 2023, 40(6): 19-27, 36. doi: 10.6052/j.issn.1000-4750.2021.11.0887
引用本文: 石世刚, 翟恩地, 许成顺, 杜修力, 孙毅龙. 转子-机舱组合体模型对海上风机结构特征频率和地震响应的影响[J]. 工程力学, 2023, 40(6): 19-27, 36. doi: 10.6052/j.issn.1000-4750.2021.11.0887
SHI Shi-gang, ZHAI En-di, XU Cheng-shun, DU Xiu-li, SUN Yi-long. EFFECTS OF ROTOR-NACELLE ASSEMBLY MODELS ON THE STRUCTURAL NATURAL FREQUENCIES AND SEISMIC RESPONSE OF OFFSHORE WIND TURBINE[J]. Engineering Mechanics, 2023, 40(6): 19-27, 36. doi: 10.6052/j.issn.1000-4750.2021.11.0887
Citation: SHI Shi-gang, ZHAI En-di, XU Cheng-shun, DU Xiu-li, SUN Yi-long. EFFECTS OF ROTOR-NACELLE ASSEMBLY MODELS ON THE STRUCTURAL NATURAL FREQUENCIES AND SEISMIC RESPONSE OF OFFSHORE WIND TURBINE[J]. Engineering Mechanics, 2023, 40(6): 19-27, 36. doi: 10.6052/j.issn.1000-4750.2021.11.0887

转子-机舱组合体模型对海上风机结构特征频率和地震响应的影响

doi: 10.6052/j.issn.1000-4750.2021.11.0887
基金项目: 国家自然科学基金优秀青年基金项目(51722801)
详细信息
    作者简介:

    石世刚(1988−),男,河北人,博士生,主要从事海上风机结构抗震研究(E-mail: shishigang@outlook.com)

    翟恩地(1962−),男,江苏人,教授,博士,博导,主要从事海上风电支撑结构设计和施工方法研究(E-mail: zhaiendi@goldwind.com.cn)

    杜修力(1962−),男,四川人,教授,博士,博导,主要从事地震工程领域研究(E-mail: duxiuli@bjut.edu.cn)

    孙毅龙(1990−),男,河南人,博士生,主要从事海上风电单桩基础桩土相互作用研究(E-mail: sunyl@emails.bjut.edu.cn)

    通讯作者:

    许成顺(1977−),女,黑龙江人,教授,博士,博导,主要从事岩土力学基础理论与试验研究(E-mail: xuchengshun@bjut.edu.cn)

  • 中图分类号: TU311.3;TM315

EFFECTS OF ROTOR-NACELLE ASSEMBLY MODELS ON THE STRUCTURAL NATURAL FREQUENCIES AND SEISMIC RESPONSE OF OFFSHORE WIND TURBINE

  • 摘要: 转子-机舱组合体(Rotor-Nacelle Assembly, RNA)又称风机机头,常用的简化模型包括点质量(RNA_M)、偏心点质量(RNA_ME)、偏心点质量-转动惯量(RNA_MEJ)和刚性机舱-刚性叶片(RNA_RB)。该文基于NREL 5MW单桩式海上风机原型,使用Abaqus软件分别建立包含这四种RNA简化模型的风机模型,以刚性机舱-可变形叶片(RNA_FB)风机模型为基准,分析不同的RNA简化模型对风机结构特征频率和地震响应的影响。研究结果表明:对于只涉及支撑结构1阶模态的问题,四种简化RNA模型计算的频率均是准确可靠的;当涉及支撑结构的2阶模态或/和扭转模态时,应采用RNA_MEJ、RNA_RB或RNA_FB模型;当涉及支撑结构的更高阶模态时,应采用RNA_FB模型。对于风机结构地震响应分析,RNA_MEJ与RNA_RB模型计算的结构响应更准确,但它们的大多数结构响应峰值的最大相对偏差均超过了10%,在实际工程应用时应慎重使用这些RNA简化模型。
  • 图  1  NREL 5 MW单桩式海上风机原型和分析模型

    Figure  1.  Prototype and analysis model of NREL 5 MW OWT with monopile foundation

    图  2  场地土层

    Figure  2.  Soil layers of the site

    图  3  地震动加速度时程

    Figure  3.  Acceleration time histories of ground motion

    图  4  阻尼比1.5%的加速度反应谱Sa

    Figure  4.  Acceleration response spectrum Sa with damping ratio of 1.5%

    图  5  不同机头模型的支撑结构特征频率的相对偏差

    Figure  5.  Relative deviation of natural frequencies of supporting structure with different RNA models

    图  6  在FA方向输入地震动记录1时的风机结构响应

    Figure  6.  Wind turbine structure responses with ground motion record 1 input in FA direction

    图  7  在SS方向输入地震动记录1时风机结构响应

    Figure  7.  Wind turbine structure responses with ground motion record 1 input in SS direction

    图  8  风机结构地震响应峰值和不同机头模型的相对偏差

    Figure  8.  Seismic response peak of WT structure and relative deviation with different RNA models

    图  9  风机结构地震响应最大相对偏差

    注:下标t为塔顶;下标m为支撑结构泥面处

    Figure  9.  Maximum relative deviation of seismic responses of WT structure

    表  1  NREL 5 MW海上风机模型基本参数

    Table  1.   Basic specifications of NREL 5 MW offshore wind turbine model

    风力发电机组基本参数
    额定功率5 MW
    叶轮直径、轮毂直径126 m, 3 m
    轮毂中心高程90 m
    切入、额定和切出风速3 m/s, 11.4 m/s, 25 m/s
    切入、额定转速6.9 RPM, 12.1 RPM
    轮毂中心水平外挑长度、主轴倾角、叶轮预锥角5 m, 5°, 2.5°
    叶轮质量110 000 kg
    机舱质量240 000 kg
    塔筒参数(海上)
    塔底和塔顶标高10 m, 87.6 m
    塔底直径和壁厚;塔顶直径和壁厚6 m, 0.027 m; 3.87 m, 0.019 m
    等效密度ρ、弹性模量E、泊松比μ8500 kg/m3, 210 GPa, 0.3
    下载: 导出CSV

    表  2  NREL 5 MW风机机头的质量特性

    Table  2.   Mass properties of RNA for NREL 5 MW WT

    软件RNA质量MRNA/tRNA质心CM/mRNA塔顶转动惯量JTT (Jxx, Jyy, Jzz,Jzx)/(×107 kg·m2)RNA质心转动惯量JCM (Jxx, Jyy, Jzz,Jzx)/(×107 kg·m2)
    NREL(ADAMS)350.0(−0.417, 0.000, 1.967)(4.505, 2.494, 2.548, −0.146)(4.370, 2.353, 2542, −0.174*)
    Abaqus350.0(−0.414, 0.000, 1.967)(4.503, 2.498, 2.551, −0.145)(4.367, 2.358, 2.547, −0.173)
    注:表中质心位置坐标和转动惯量都是相对于塔顶坐标系;在Abaqus中,Jzx的正负号规定与ASAMS的相反,“*”表示推算得到。
    下载: 导出CSV

    表  3  NREL 5 MW单桩式海上风机支撑结构的特征频率(固定)

    Table  3.   Natural frequencies of supporting structure of NREL 5 MW OWT with monopile foundation (Fixed)

    序号模态FAST[21]/HzAbaqus/Hz相对偏差/(%)
    1FA10.2790.271−3.10
    2SS10.2780.269−2.57
    3FA22.4222.305−3.85
    4SS22.3772.218−5.90
    下载: 导出CSV

    表  4  输入地震动

    Table  4.   Input ground motion

    序号编号地震记录分量加速度反应谱最大值Sa,max/g
    1RSN962Northridge-01WAT1801.644
    2RSN1768Hector MineBRS3602.071
    3RSN4872Chuetsu-oki, Japan65053NS1.730
    下载: 导出CSV

    表  5  风机支撑结构的特征模态与频率

    Table  5.   Natural modes and frequencies of WT supporting structure

    序号模态RNA_FB/HzRNA_M/HzRNA_ME/HzRNA_MEJ/HzRNA_RB/Hz
    1FA10.23830.24790.24110.23940.2392
    2SS10.23750.24790.24110.23790.2378
    3FA21.57371.73931.68721.49051.4761
    4SS21.3444a1.73931.68751.31471.3285
    5FA34.1412a4.64204.48314.4445a4.5107a
    6SS34.2244a4.64204.48814.2481a4.2479a
    7FA49.1045a9.35249.069610.715010.6990
    8SS49.3720a9.35249.044910.611010.6110
    9FA513.7223a14.939014.546016.271016.2620
    10SS514.6667a14.939014.538016.212016.2120
    11ATR11.674511.489011.48201.35471.3880
    12ATC16.8059a6.71816.70106.72966.7282
    注:FA为风机前后向;SS为风机侧向;ATR为轴向扭转;ATC为轴向受拉或受压;MSIn为模态标识符,例如FA1,n为振动模态的阶数;“a”表示是多个衍生模态的平均特征频率。
    下载: 导出CSV
  • [1] LEE J, ZHAO F. Global wind report 2021 [R]. Brussels: Global Wind Energy Council, 2021.
    [2] FICHAUX N, BEURSKENS J, JENSEN P H, et al. Upwind: Design limits and solutions for very large wind turbines [R]. Copenhagen: Sixth Framework Programme, 2011.
    [3] ZHANG P, DING H, LE C, et al. Test on the dynamic response of the offshore wind turbine structure with the large-scale bucket foundation [J]. Procedia Environmental Sciences, 2012, 12: 856 − 863. doi: 10.1016/j.proenv.2012.01.359
    [4] KATSANOS E I, THONS S, GEORGAKIS C T. Wind turbines and seismic hazard: A state-of-the-art review [J]. Wind Energy, 2016, 19(11): 2113 − 2133. doi: 10.1002/we.1968
    [5] AGEZE M B, HU Y, WU H. Wind turbine aeroelastic modeling: Basics and cutting edge trends [J]. International Journal of Aerospace Engineering, 2017, 2017(pta1): 1 − 15.
    [6] PASSON P, KÜHN M. State-of-the-art and development needs of simulation codes for offshore wind turbines [C]. Copenhagen: Copenhagen offshore wind 2005 conference and expedition proceedings, 2005: 1 − 12.
    [7] DARVISHI-ALAMOUTI S, BAHAARI M, MORADI M. Dynamic analysis of a monopile supported wind turbine considering experimental p-y curves [J]. Ships and Offshore Structures, 2020, 15(6): 670 − 682. doi: 10.1080/17445302.2019.1665910
    [8] 戴靠山, 胡皓, 梅竹, 等. 长周期地震下风力发电塔架结构地震反应分析[J]. 工程力学, 2021, 38(8): 213 − 221. doi: 10.6052/j.issn.1000-4750.2021.02.0121

    DAI Kaoshan, HU Hao, MEI Zhu, et al. Seismic response analysis of wind power tower under long period ground motions [J]. Engineering Mechanics, 2021, 38(8): 213 − 221. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0121
    [9] 赵志, 戴靠山, 毛振西, 等. 不同频谱特性地震动下风电塔破坏分析[J]. 工程力学, 2018, 35(增刊 1): 293 − 299. doi: 10.6052/j.issn.1000-4750.2017.06.S056

    ZHAO Zhi, DAI Kaoshan, MAO Zhenxi, et al. Failure analyses of a wind turbine tower under ground motions with different frequency characteristics [J]. Engineering Mechanics, 2018, 35(Suppl 1): 293 − 299. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.S056
    [10] MO R, CAO R, LIU M, et al. Seismic fragility analysis of monopile offshore wind turbines considering ground motion directionality [J]. Ocean Engineering, 2021, 235: 109414.
    [11] YAN Y, LI C, LI Z. Buckling analysis of a 10 mw offshore wind turbine subjected to wind-wave-earthquake loadings [J]. Ocean Engineering, 2021, 236: 109452. doi: 10.1016/j.oceaneng.2021.109452
    [12] DE RISI R, BHATTACHARYA S, GODA K. Seismic performance assessment of monopile-supported offshore wind turbines using unscaled natural earthquake records [J]. Soil Dynamics and Earthquake Engineering, 2018, 109: 154 − 172. doi: 10.1016/j.soildyn.2018.03.015
    [13] KAMEL A, DAMMAK K, YANGUI M, et al. A reliability optimization of a coupled soil structure interaction applied to an offshore wind turbine [J]. Applied Ocean Research, 2021, 113: 102641. doi: 10.1016/j.apor.2021.102641
    [14] BISOI S, HALDAR S. Dynamic analysis of offshore wind turbine in clay considering soil–monopile–tower interaction [J]. Soil Dynamics and Earthquake Engineering, 2014, 63: 19 − 35. doi: 10.1016/j.soildyn.2014.03.006
    [15] KJØRLAUG R A, KAYNIA A M, ELGAMAL A. Seismic response of wind turbines due to earthquake and wind loading [C]. Porto: Proceedings of the 9th International Conference on Structural Dynamics, EURODYN, 2014: 3627 − 3634.
    [16] 柯世堂, 王同光, 胡丰, 等. 基于塔架-叶片耦合模型风力机全机风振疲劳分析[J]. 工程力学, 2015, 32(8): 36 − 41. doi: 10.6052/j.issn.1000-4750.2014.02.0102

    KE Shitang, WANG Tongguang, HU Feng, et al. Wind-induced fatigue analysis of wind turbine system based on tower-blade coupled model [J]. Engineering Mechanics, 2015, 32(8): 36 − 41. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.02.0102
    [17] ALKHOURY P, SOUBRA A H, REY V, et al. A full three-dimensional model for the estimation of the natural frequencies of an offshore wind turbine in sand [J]. Wind Energy, 2021, 24(7): 699 − 719. doi: 10.1002/we.2598
    [18] CAO G, CHEN Z, WANG C, et al. Dynamic responses of offshore wind turbine considering soil nonlinearity and wind-wave load combinations [J]. Ocean Engineering, 2020, 217: 108155. doi: 10.1016/j.oceaneng.2020.108155
    [19] ZHAO B, GAO H, WANG Z, et al. Shaking table test on vibration control effects of a monopile offshore wind turbine with a tuned mass damper [J]. Wind Energy, 2018, 21(12): 1309 − 1328. doi: 10.1002/we.2256
    [20] ALI A, DE RISI R, SEXTOS A. Seismic assessment of wind turbines: How crucial is rotor-nacelle-assembly numerical modeling? [J]. Soil Dynamics and Earthquake Engineering, 2021, 141: 106483. doi: 10.1016/j.soildyn.2020.106483
    [21] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5 MW reference wind turbine for offshore system development [R]. Golden, Colorado: National Renewable Energy Laboratory, 2009.
    [22] JONKMAN J, MUSIAL W. Offshore code comparison collaboration (OC3) for iea wind task 23 offshore wind technology and deployment [R]. Golden, Colorado: National Renewable Energy Laboratory, 2010.
    [23] SIMULIA D S. Abaqus 6.14 analysis user's manual [M]. Providence: DS Simulia Corp, 2015.
    [24] CHOPRA A K. Dynamics of structures [M]. New Jersey: Prentice Hall, 2012.
    [25] PASSON P. Memorandum: Derivation and description of the soil-pile-interaction models [R]. Stuttgart: University of Stuttgart, 2006.
    [26] ISO 19901-4, Petroleum and natural gas industries—specific requirements for offshore structures, part 4—geotechnical and foundation design considerations [S]. Washington, DC: API Publishing Services, 2014.
    [27] ISENHOWER W M, WANG S T. User’s manual for lpile 2015 [M]. Austin: Ensoft Inc., 2015.
    [28] REESE L C, WANG S T, ARRELLAGA J A, et al. Apile 2015-user’s manual [M]. Austin: Ensoft Inc. , 2015.
    [29] NREL. Using aggregate mass in adams to check nrel [EB/OL]. https://forums.nrel.gov/t/using-aggregate-mass-in-adams-to-check-nrel-cs-monopile-bmi/696, 2013-06-03.
    [30] PEER. Pacific earthquake engineering research (peer) ground motion database [EB/OL]. https://ngawest2.berkeley.edu, 2013-05-01.
    [31] CHEN C, DUFFOUR P. Modelling damping sources in monopile-supported offshore wind turbines [J]. Wind Energy, 2018, 21(11): 1121 − 1140. doi: 10.1002/we.2218
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  217
  • HTML全文浏览量:  110
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 修回日期:  2022-04-01
  • 网络出版日期:  2022-04-23
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回