留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢-UHPC组合板栓钉抗剪承载力、滑移与刚度计算

李聪 陈宝春 胡文旭 苏家战

李聪, 陈宝春, 胡文旭, 苏家战. 钢-UHPC组合板栓钉抗剪承载力、滑移与刚度计算[J]. 工程力学, 2023, 40(6): 110-121. doi: 10.6052/j.issn.1000-4750.2021.11.0881
引用本文: 李聪, 陈宝春, 胡文旭, 苏家战. 钢-UHPC组合板栓钉抗剪承载力、滑移与刚度计算[J]. 工程力学, 2023, 40(6): 110-121. doi: 10.6052/j.issn.1000-4750.2021.11.0881
LI Cong, CHEN Bao-chun, HU Wen-xu, SU Jia-zhan. CALCULATION OF SHEAR BEARING CAPACITY, SLIP AND STIFFNESS OF HEADED STUDS IN STEEL-UHPC COMPOSITE SLAB[J]. Engineering Mechanics, 2023, 40(6): 110-121. doi: 10.6052/j.issn.1000-4750.2021.11.0881
Citation: LI Cong, CHEN Bao-chun, HU Wen-xu, SU Jia-zhan. CALCULATION OF SHEAR BEARING CAPACITY, SLIP AND STIFFNESS OF HEADED STUDS IN STEEL-UHPC COMPOSITE SLAB[J]. Engineering Mechanics, 2023, 40(6): 110-121. doi: 10.6052/j.issn.1000-4750.2021.11.0881

钢-UHPC组合板栓钉抗剪承载力、滑移与刚度计算

doi: 10.6052/j.issn.1000-4750.2021.11.0881
基金项目: 国家重点研发计划项目(2018YFC0705400);广西大学高层次人才资助项目(A3030051017,A3030051026);广西青年自然基金项目(2021GXNSFBA220006)
详细信息
    作者简介:

    李 聪(1990−),男,河南汝南人,助理研究员,博士,主要从事钢-UHPC组合结构研究(E-mail: congli@gxu.edu.cn)

    胡文旭(1997−),男,浙江温州人,硕士生,主要从事UHPC研究(E-mail: 1056768983@qq.com)

    苏家战(1983−),男,福建泉州人,副研究员,博士,主要从事UHPC桥梁结构研究(E-mail: jiazhansu@fzu.edu.cn)

    通讯作者:

    陈宝春(1958−),男,福建罗源人,教授,博士,博导,主要从事桥梁与结构工程研究(E-mail: baochunchen@fzu.edu.cn)

  • 中图分类号: TU398+.9

CALCULATION OF SHEAR BEARING CAPACITY, SLIP AND STIFFNESS OF HEADED STUDS IN STEEL-UHPC COMPOSITE SLAB

  • 摘要: 钢-Ultra-high performance concrete (UHPC)组合桥面板在大跨桥梁中具有较多应用,栓钉连接件对其组合作用的发挥起关键作用。为探究钢-UHPC组合板中栓钉抗剪性能,开展了6个栓钉抗剪推出试验,收集了6种抗剪承载力计算方法、5种抗剪滑移预测模型和10种抗剪刚度计算方法,根据试验结果分别进行计算分析。试验结果表明:所有试件中的栓钉均表现为焊缝与根部交界处剪断,UHPC板除在栓钉根部位置出现局部破损外,基本保持完好;栓钉的抗剪滑移曲线经历弹性、弹塑性和下降3个阶段;所有试件最大滑移量均小于3.5 mm,可取0.1 mm作为弹性极限滑移量。计算结果表明:现有部分规范计算UHPC中栓钉抗剪承载力时不考虑焊缝影响,计算结果偏低,根据该文2组试验数据和收集29组有效数据,提出考虑焊缝影响的计算式,建议UHPC中栓钉焊缝贡献系数取1.1;不同抗剪滑移模型预测结果差异大,建议采用反比例函数形式的模型预测,较为精确;栓钉的抗剪刚度取值由于未考虑栓钉实际处于受力状态,计算结果差异大,建议取滑移量0.1 mm对应的刚度作为弹性抗剪刚度;建立了栓钉抗剪滑移模型与抗剪刚度的关系式,在缺少试验数据时可为近似计算提供参考。
  • 图  1  试件构造细节 /mm

    Figure  1.  Details of specimen

    图  2  试验装置

    Figure  2.  Test set-up

    图  3  荷载-滑移曲线

    Figure  3.  Load-slip curves

    图  4  界面破坏照片

    Figure  4.  Photos of interface failure

    图  5  UHPC中栓钉焊缝贡献系数拟合结果

    Figure  5.  Fitting results of contribution coefficient of stud weld in UHPC

    图  6  荷载-滑移曲线预测结果

    Figure  6.  Load-slip curve prediction results

    图  7  栓钉受力状态与不同荷载取值、滑移量的关系

    Figure  7.  The relationship between the force state of the stud and different load and slip values

    图  8  栓钉抗剪刚度计算结果

    Figure  8.  Calculation results of stud shear stiffness

    图  9  栓钉荷载-滑移预测曲线与抗剪刚度关系

    Figure  9.  Relationship between load-slip prediction curve and shear stiffness of headed stud

    表  1  钢材材性指标

    Table  1.   Mechanical properties of steel

    钢材类型屈服强度/MPa极限强度/MPa弹性模量/GPa
    栓钉350.0440.0207.0
    钢板345.5470.3206.2
    钢筋500.4590.2210.8
    下载: 导出CSV

    表  2  试验主要结果

    Table  2.   Main test results

    试件编号荷载/kN滑移/mm破坏模式
    极限荷载Nu单钉承载力Ps单钉承载力平均值Ps,ave极限滑移Su极限滑移平均值Su,ave最大滑移Smax最大滑移平均值Smax,ave
    SI-1269.167.361.81.501.512.803.09双侧
    SI-2232.758.21.463.36单侧
    SI-3240.060.01.583.11双侧
    SII-1468.258.558.82.252.053.022.78双侧
    SII-2452.056.51.652.50双侧
    SII-3490.561.32.252.81双侧
    下载: 导出CSV

    表  3  栓钉抗剪承载力部分规范的计算方法

    Table  3.   Calculation formula for stud shear strength in some codes

    公式编号资料来源计算式计算说明
    式(1) EC4[23] ${V_{\rm{S,c} } } = {\text{min} }\left\{ \begin{gathered} 0.29{A_{\rm{s} } }\sqrt { {f_{ {\text{ck} } } }{E_{\text{c} } } } \\ {\text{ } }\phi {A_{\rm{s} } }{f_{\rm{u} } }/{\gamma _{\rm{v} } } \\ \end{gathered} \right.$ 原式中抗力折减系数$ \phi $取0.8和荷载分项系数$ {\gamma _{\rm{v}}} $取1.25。
    式(2) AASHTO[24] ${V_{\rm{S,c} } } = {\text{min} }\left\{ \begin{gathered} 0.43{A_{\rm{s} } }\sqrt { {f_{\rm{ck} } }{E_{\rm{c} } } } \\ {\text{ } }\phi {A_{\rm{s} } }{f_{\rm{u} } } \\ \end{gathered} \right.$ 原式在设计时,抗力折减系数$ \phi $取0.85。
    式(3) AISC 360-10[25] ${V_{\rm{S,c} } } = {\text{min} }\left\{ \begin{gathered} 0.5{A_{\text{s} } }\sqrt { {f_{\rm{ck} } }{E_{\rm{c} } } } \\ {\text{ } }{\eta _{\rm{g} } }{\eta _{\rm{p} } }{A_{\rm{s} } }{f_{\rm{u} } } \\ \end{gathered} \right.$ 原式中群钉效应折减系数${\eta _{\rm G}}$取1.0,栓钉位置折减系数${\eta _{\rm P}}$取0.75。
    式(4) GB 50017−2017[19] ${V_{\rm{S,c} } } = {\text{min} }\left\{ \begin{gathered} 0.43{A_{\text{s} } }\sqrt { {E_{\text{c} } }{f_{\text{c} } } } \\ {\text{ } }0.7{A_{\text{s} } }\gamma f \\ \end{gathered} \right.$ 式中,$ {\gamma _{}} $在栓钉材料性能等级为4.6时,取1.67,$f$取215 MPa。
    式(5) GB 50917−2013[26] ${V_{\rm{S,c} } } = {\text{min} }\left\{ \begin{gathered} 0.43{\eta _{\rm{g} } }{A_{\rm{s} } }\sqrt { {f_{ {\rm{cd} } } }{E_{\rm{c} } } } \\ {\text{ } }1.19{A_{\rm{s} } }{f_{\rm{u} } }{\left(\dfrac{ { {E_{\text{c} } } } }{ { {E_{\text{s} } } } }\right)^{0.2} }{\left(\dfrac{ { {f_{ {\text{cu} } } } } }{ { {f_{\text{s} } } } }\right)^{0.1} } \\ \end{gathered} \right.$ 式中,依据结构破坏形式分别给出相应的抗剪承载力计算公式。
    式(6) DOINGHAUS等[27] ${V_{\rm{S,c}}} = (\phi {A_{\rm{s}}}{f_{\rm{u}}}{\text{ + }}\varphi {f_{{\rm{cu150}}}}{d_{\rm{wc}}}{l_{\rm{wc}}})/{\gamma _{\rm{v}}}$ 原式中抗力折减系数$ \phi $取0.8和荷载分项系数 $ {\gamma _{\rm{v}}} $取1.25;$ \varphi $可取2.5[12]、2.0[9]和1.5[8]
    下载: 导出CSV

    表  4  抗剪承载力计算值与实测值

    Table  4.   Calculated and measured values of shear capacity

    试件编号$ {V_{{\rm{S,e}}}} $部分规范($ {V_{{\rm{S,c}}}}/{V_{{\rm{S,e}}}} $)考虑焊缝影响($ {V_{{\rm{S,c}}}}/{V_{{\rm{S,e}}}} $)
    式(1)~式(3)式(4)式(5)式(6)
    $\varphi $=2.5[12]$\varphi $=2.0[9]$\varphi $=1.5[8]
    SI-1 67.3 0.73 0.87 0.70 1.04 0.98 0.92
    SI-2 58.2 0.85 1.00 0.81 1.20 1.13 1.06
    SI-3 60.0 0.82 0.97 0.79 1.17 1.10 1.03
    SII-1 58.5 0.84 1.00 0.81 1.20 1.13 1.06
    SII-2 56.5 0.87 1.03 0.84 1.24 1.17 1.10
    SII-3 61.3 0.80 0.95 0.77 1.14 1.08 1.01
    平均值 60.3 0.82 0.97 0.79 1.17 1.10 1.03
    标准差 3.47 0.04 0.05 0.04 0.06 0.06 0.06
    下载: 导出CSV

    表  5  采用文献数据的计算结果讨论

    Table  5.   Discussion on calculation results using literature data

    计算结果式(1)式(2)~式(4)式(5)式(6)
    $\varphi $=2.5[12]$\varphi $=2.0[9]$\varphi $=1.5[8]
    平均值0.670.840.661.101.051.01
    标准差0.130.130.120.240.220.20
    下载: 导出CSV

    表  6  抗剪荷载与滑移关系模型

    Table  6.   Relationship between shear load and slip

    公式编号资料来源预测模型公式计算说明
    式(7)OLLGAARD等[32]$ \dfrac{P}{{{P_{\rm{u}}}}}{\text{ = }}{(1 - {{\rm{e}}^{ - 0.71S}})^{0.4}} $研究对象主要为LAWC和NC
    式(8)AN等[33]$ \dfrac{P}{{{P_{\rm{u}}}}}{\text{ = }}\dfrac{{4.44(S - 0.031)}}{{1 + 4.24(S - 0.031)}} $研究对象为HSC
    式(9)SU等[34]$ \dfrac{P}{{{P_{\text{u}}}}}{\text{ = }}{(1 - {{\rm{e}}^{ - 0.61S}})^{0.34}} $研究对象为HSC;对荷载-滑移曲线进行拟合。
    式(10)WANG等[6]$ \dfrac{P}{{{P_{\rm{u}}}}}{\text{ = }}{(1 - {{\rm{e}}^{ - 1.1S}})^{0.96}} $研究对象为NC和UHPC;对荷载-滑移曲线进行拟合。
    式(11)WANG等[7]$ \dfrac{P}{{{P_{\rm{u}}}}}{\text{ = }}\dfrac{{S/d}}{{0.006 + 1.02 \cdot S/d}} $研究对象为NC和UHPC;考虑栓钉直径影响。
    下载: 导出CSV

    表  7  抗剪刚度计算方法

    Table  7.   Calculation method of shear stiffness

    计算方法公式编号资料来源抗剪刚度计算式计算说明
    滑移曲线按$ {V_{\rm{S}}} $倍数式(15)EC4[23]$K{\text{ = 0} }{\text{.7} }{V_{\text{S} } }/S$取栓钉抗剪承载力$ {V_{\rm{S}}} $的0.7倍除以对应的滑移量S
    式(16)JOHNSON等[35]$K{\text{ = 0} }{\text{.5} }{V_{\text{S} } }/S$取栓钉抗剪承载力$ {V_{\rm{S}}} $的0.5倍除以对应的滑移量S
    式(17)JSSC[36]$K{\text{ = 1/3} }{V_{\text{S} } }/S$取栓钉抗剪承载力$ {V_{\rm{S}}} $的1/3倍除以对应的滑移量S
    按滑移量${ {{S} }_i}$式(18)蔺钊飞等[17]$K{\text{ = } }{V_{ { {\rm{S} }_{0.2} } } }/{ {{S} }_{0.2} }$取滑移量S在0.2 mm时,对应荷载进行求解,即0.2 mm割线刚度法。
    式(19)GB 50017−2017[19]$K{\text{ = } }{V_{\text{S} } }/{ {{S} }_{1.0} }$取栓钉抗剪承载力VSS取1.0 mm。
    式(20)聂建国[37]$K{\text{ = } }{0.66V_{\text{S} } }/{ {{S} }_{1.0} }$取栓钉承载力的VS0.66倍时,S取1.0 mm。
    式(21)WANG[38]$K{\text{ = } }{V_{ { {\rm{S} }_{0.8} } } }/{ {{S} }_{0.8} }$取滑移量S在0.8 mm时,对应荷载进行求解,即0.8 mm割线刚度法。
    式(22)周安等[39]$K{\text{ = } }{V_{ { {\rm{S} }_{0.5} } } }/{ {{S} }_{0.5} }$取滑移量S在0.5 mm时,对应荷载进行求解,即0.5 mm割线刚度法。
    理论与规范计算式(23)蔺钊飞等[18]$K = 0.32{d_{\rm{s}}}E_{\rm{s}}^{1/4}E_{\rm{c}}^{3/4} $基于推力桩小变形理论推导,并结合试验和收集数据拟合得到0.32。
    式(24)JTG/TD 64-01−2015[40]$K = 13.0{d_{\rm{s}}}\sqrt { {E_{\rm{c}}}{f_{\rm{ck}} }} $基于试验结果拟合得到,在未开展试验时可用于估算。
    下载: 导出CSV

    表  8  抗剪刚度计算结果

    Table  8.   Calculation results of shear stiffness

    组号编号按荷载倍数计算按滑移量计算理论与规范计算
    式(15)式(16)式(17)式(18)式(19)式(20)式(21)式(22)本文式(23)式(24)
    SI组1314.0739.5962.9262.567.544.676.4108.4450.0
    2302.0694.81004.1222.551.333.878.9100.0375.0
    3287.9544.2559.9268.252.534.775.7100.0375.0
    平均值301.3659.5842.3251.1 57.137.777.0102.8400.0
    变异性3.512.723.88.112.913.01.83.98.8
    SII组1343.8731.71000.0250.055.036.364.8111.4400.0
    2393.8687.5750.0225.053.835.567.3100.0416.7
    3425.0882.41000.0250.058.138.469.3111.3437.5
    平均值387.5767.2916.7241.755.636.767.1107.6418.1
    变异性8.610.912.94.93.33.32.75.03.7
    平均值344.4713.4879.5246.456.437.272.1105.2409.0595.4 481.0
    变异性14.413.919.27.09.69.77.25.07.0
    下载: 导出CSV
  • [1] WALTER R, OLESEN J F, STANG H, et al. Analysis of an orthotropic deck stiffened with a cement-based overlay [J]. Journal of Bridge Engineering, 2007, 12(3): 350 − 363. doi: 10.1061/(ASCE)1084-0702(2007)12:3(350)
    [2] 邵旭东, 胡建华. 钢-超高性能混凝土轻型组合桥梁结构[M]. 北京: 人民交通出版社, 2015.

    SHAO Xudong, HU Jianhua. The steel-UHPC light weighted composite bridge structure [M]. Beijing: China Communications Press, 2015. (in Chinese)
    [3] KIM J S, KWARK J, JOH C, et al. Headed stud shear connector for thin ultrahigh-performance concrete bridge deck [J]. Journal of Constructional Steel Research, 2015, 108(5): 23 − 30.
    [4] 彭云帆. 钢-UHPC组合桥面板连接件抗剪性能研究[D]. 福州: 福州大学. 2017.

    PENG Yunfan. Research on shear behavior of connections of steel-UHPC composite deck [D]. Fuzhou: Fuzhou University. 2017. (in Chinese)
    [5] DIENG L, MARCHAND P, GOMES F, et al. Use of UHPFRC overlay to reduce stresses in orthotropic steel decks [J]. Journal of Constructional Steel Research, 2013, 89(5): 30 − 41.
    [6] WANG J, XU Q, YAO Y, et al. Static behavior of grouped large headed stud-UHPC shear connectors in composite structures [J]. Composite Structures, 2018, 206: 202 − 214. doi: 10.1016/j.compstruct.2018.08.038
    [7] WANG J, QI J, TONG T, et al. Static behavior of large stud shear connectors in steel-UHPC composite structures [J]. Engineering Structures, 2018, 178: 534 − 542.
    [8] HEGGER J, SEDLACEK G, DOINGHAUS P, et al. Studies on the ductility of shear connectors when using high−strength steel and high−strength concrete [C]//International Symposium on Connections between Steel and Concrete. Cedex, France: RILEM Publications SARL, 2001: 1025 − 1045.
    [9] 李萌, 邵旭东, 曹君辉, 等. UHPC中短栓钉抗剪性能试验及理论分析研究[J]. 中国公路学报, 2021, 34(8): 191 − 204. doi: 10.3969/j.issn.1001-7372.2021.08.017

    LI Meng, SHAO Xudong, CAO Junhui, et al. Performance of experimental and theoretical analysis on shear short headed studs embedded in UHPC [J]. China Journal of Highway and Transport, 2021, 34(8): 191 − 204. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.08.017
    [10] CAO J, SHAO X. Finite element analysis of headed studs embedded in thin UHPC [J]. Journal of Constructional Steel Research, 2019, 161: 355 − 368. doi: 10.1016/j.jcsr.2019.03.016
    [11] DOMINIC K, KAY W, ARASH E Z. Push−out behavior of headed shear studs welded on thin plates and embedded in UHPC [J]. Engineering Structures, 2018, 173: 429 − 441. doi: 10.1016/j.engstruct.2018.07.013
    [12] LUO Y, HOKI K, HAYASHI K, et al. Behavior and strength of headed stud−SFRCC shear connection, II: Strength evaluation [J]. Journal of Structural Engineering, 2015, 142(2): 04015113-1 − 04015113-10.
    [13] GB/T 10433−2002, 电弧螺柱焊用圆柱头焊钉[S]. 北京: 中国标准出版社, 2002.

    GB/T 10433−2002, Cheese head studs for arc stud welding [S]. Beijing: Standards Press of China, 2002. (in Chinese)
    [14] GB/T 31387−2015, 活性粉末混凝土[S]. 北京: 中国标准出版社, 2015.

    GB/T 31387−2015, Reactive powder concrete [S]. Beijing: Standards Press of China, 2015. (in Chinese).
    [15] 杨简, 陈宝春, 沈秀将, 等. UHPC单轴拉伸试验狗骨试件优化设计[J]. 工程力学, 2018, 35(10): 37 − 46, 55. doi: 10.6052/j.issn.1000-4750.2017.06.0446

    YANG Jian, CHEN Baochun, SHEN Xiujiang, et al. The optimized design of dog-bones for tensile test of ultra-high performance concrete [J]. Engineering Mechanics, 2018, 35(10): 37 − 46, 55. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.0446
    [16] GB/T 228.1−2010, 金属材料拉伸试验 第 I 部分: 室温试验方法[S]. 北京: 中国标准出版社, 2010.

    GB/T 228.1−2010, Metallic materials−Tensile testing−Part I: Method of test at room temperature [S]. Beijing: Standards Press of China, 2010. (in Chinese)
    [17] 蔺钊飞, 刘玉擎. 大直径焊钉连接件抗剪性能试验[J]. 同济大学学报(自然科学版), 2015, 43(12): 1788 − 1793. doi: 10.11908/j.issn.0253-374x.2015.12.004

    LIN Zhaofei, LIU Yuqing. Experimental study on shear behavior of large stud connectors [J]. Journal of Tongji University (Natural Science), 2015, 43(12): 1788 − 1793. (in Chinese) doi: 10.11908/j.issn.0253-374x.2015.12.004
    [18] 蔺钊飞, 刘玉擎, 贺君. 焊钉连接件抗剪刚度计算方法研究[J]. 工程力学, 2014, 31(7): 85 − 90. doi: 10.6052/j.issn.1000-4750.2013.01.0034

    LIN Zhaofei, LIU Yuqing, HE Jun. Research on calculation method of shear stiffness for headed stud connectors [J]. Engineering Mechanics, 2014, 31(7): 85 − 90. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.01.0034
    [19] GB 50017−2017, 钢结构设计规范[S]. 北京: 中国标准出版社, 2017.

    GB 50017−2017, Standard for design of steel structure [S]. Beijing: Standards Press of China, 2017. (in Chinese)
    [20] BENJAMIN A G. Characterization of the behavior of ultra-high performance concrete [D]. Maryland: University of Maryland, 2005: 141 − 154.
    [21] 杜任远. 活性粉末混凝土梁、拱极限承载力研究[D]. 福州: 福州大学, 2014.

    DU Renyuan. Research on study on ultimate bearing capacity of reactive powder concrete (RPC) box girder and arch [D]. Fuzhou: Fuzhou University. 2014. (in Chinese)
    [22] 陈宝春, 杨简, 黄卿维, 等. 超高性能混凝土形状与尺寸效应分析[J]. 福州大学学报:自然科学版, 2019, 47(3): 391 − 397.

    CHEN Baochun, YANG Jian, HUANG Qingwei, et al. Analysis of shape and size effect of ultra-high performance concrete [J]. Journal of Fuzhou University (Natural Science Edition), 2019, 47(3): 391 − 397. (in Chinese)
    [23] EN 1994-1-1: 2004, Eurocode 4: Design of composite and concrete structures Part 1-1: General rules and rules for buildings [S]. Belgium: European Committee for Standardization, 2004.
    [24] AASHTO. AASHTO LRFD Bridge design specifications [S]. Washington DC, U. S. A: American Association of State Highway and Transportation Officials, 2012: 1 − 43.
    [25] AISC 360-10, Specification for structural steel buildings [S]. Chicago: American Institute of Steel Construction, 2010.
    [26] GB 50917−2013, 钢-混凝土组合桥梁设计规范[S]. 北京: 中国标准出版社, 2013.

    GB 50917−2013, Code for design of steel and concrete composite bridge [S]. Beijing: Standards Press of China, 2013. (in Chinese)
    [27] DOINGHAUS P, GORALSKI C, WILL N. Design rules for composite structures with high performance steel and high performance concrete [C]// International Conference on High Performance Materials in Bridges. Hawaii: Transportation Research Board (TRB) , 2003: 139 − 149.
    [28] 谢泽豪. 钢-预制UHPC组合桥面板试设计与抗剪界面性能研究[D]. 福州: 福州大学, 2020.

    XIE Zehao. Research on trial design and shear experiment of steel−precast UHPC composite bridge deck [D]. Fuzhou: Fuzhou University, 2020. (in Chinese)
    [29] 孙启力, 路新瀛, 聂鑫, 等. 非蒸养UHPC-钢板结构界面的受拉和剪切性能试验研究[J]. 工程力学, 2017, 34(9): 167 − 174, 192. doi: 10.6052/j.issn.1000-4750.2016.05.0361

    SUN Qili, LU Xinying, NIE Xin, et al. Experimental research on tensile and shear behavior of tensile and shear behavior of the interface between non steam cured UHPC and steel plate structure [J]. Engineering Mechanics, 2017, 34(9): 167 − 174, 192. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.05.0361
    [30] 张士红, 邵旭东, 黄细军, 等. 轻型组合桥面板中小栓钉连接件的静力及疲劳性能[J]. 公路交通科技, 2016, 33(11): 111 − 119. doi: 10.3969/j.issn.1002-0268.2016.11.017

    ZHANG Shihong, SHAO Xudong, HUANG Xijun, et al. Static and fatigue behaviors of small stud shear connector for lightweight composite bridge deck [J]. Journal of Highway and Transportation Research and Development, 2016, 33(11): 111 − 119. (in Chinese) doi: 10.3969/j.issn.1002-0268.2016.11.017
    [31] 杜阳. 组合钢板梁UHPC肋式桥面板及其剪力连接件受力性能研究[D]. 福州: 福州大学, 2019.

    DU Yang. Mechanical behavior for UHPC ribbed deck and internal shear connection of composite beams with steel plates [D]. Fuzhou: Fuzhou University, 2019. (in Chinese)
    [32] OLLGAARD J, SLUTTER R G, FISHER J W. The strength of stud shear connection in lightweight and normal-weight concrete [J]. Engineering Joural, 1971, 8(2): 55 − 64.
    [33] AN L, CEDERWALL K. Push−out tests on studs in high strength and normal strength concrete [J]. Journal of Constructional Steel Research, 1996, 36(1): 15 − 29. doi: 10.1016/0143-974X(94)00036-H
    [34] SU Q, YANG G, BRADFORD M. Static behavior of multi-row stud shear connectors in high-strength concrete [J]. Steel and Composite Structures, 2014, 17(6): 967 − 980. doi: 10.12989/scs.2014.17.6.967
    [35] JOHNSON R P, MAY I M. Partial-interaction design of composite beams [J]. Structure Engineering, 1975, 53(8): 305 − 311.
    [36] 日本鋼構造協会. 頭付きスタッドの押拔き試験方法(案)とスタッドに関する研究の現状[S]. 東京都: 日本鋼構造協会, 1996.

    Japanese Society of Steel Construction. Standard on push-out test for headed stud (draft) [S]. Tokyo Metropolis: Japanese Society of Steel Construction, 1996. (in Japanese)
    [37] 聂建国. 钢-混凝土组合梁结构: 试验、理论与应用[M]. 北京: 科学出版社, 2005.

    NIE Jianguo. Steel−concrete composite beam structure: experiment, theory and application [M]. Beijing: Science Press, 2005. (in Chinese)
    [38] WANG Y C. Deflection of steel-concrete composite beams with partial shear interaction [J]. Journal of Structural Engineering, 1998, 124(10): 1159 − 1165. doi: 10.1061/(ASCE)0733-9445(1998)124:10(1159)
    [39] 周安, 戴航, 刘其伟. 栓钉连接件极限承载力及剪切刚度的试验[J]. 工业建筑, 2007, 37(10): 84 − 87.

    ZHOU An, DAI Hang, LIU Qiwei. Experiment on ultimate bearing capacity and shear rigidity of stud connectors [J]. Industrial Construction, 2007, 37(10): 84 − 87. (in Chinese)
    [40] JTG/TD 64-01−2015, 公路钢混组合桥梁设计与施工[S]. 北京: 人民交通出版社, 2015.

    JTG/T D64−01−2015, Specifications for design and construction of highway steel-concrete composite bridge [S]. Beijing: China Communication Press, 2015. (in Chinese)
    [41] GDJTG/T A01−2015, 超高性能轻型组合桥面结构技术规程[S]. 北京: 人民交通出版社, 2015.

    GDJTG/T A01−2015, Technical specification for ultra-high performance light−weighted composite deck structure [S]. Beijing: China Communication Press, 2015. (in Chinese)
    [42] 李聪, 陈宝春, 黄卿维. 超高性能混凝土圆环约束收缩 试验研究[J]. 工程力学, 2019, 36(8): 49 − 58. doi: 10.6052/j.issn.1000-4750.2018.10.0552

    LI Cong, CHEN Baochun, HUANG Qingwei. Experimental study on shrinkage of ultra−high performance concrete under restrained ring [J]. Engineering Mechanics, 2019, 36(8): 49 − 58. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0552
    [43] ALI A, HEATHER L, DIBA Y, et al. Static performance of stud shear connectors and UHPC in deck−to−girder composite connection, [J]. Engineering Structures, 2022, 255: 113917. doi: 10.1016/j.engstruct.2022.113917
    [44] 武芳文, 冯彦鹏, 戴君, 等. 钢-UHPC组合结构中栓钉剪力键力学性能研究[J]. 工程力学, 2022, 39(2): 222 − 234. doi: 10.6052/j.issn.1000-4750.2021.05.0389

    WU Fangwen, FENG Yanpeng, DAI Jun, et al. Study on mechanical properties of stud shear connectors of steel−UHPC composite structures [J]. Engineering Mechanics, 2022, 39(2): 222 − 234. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0389
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  60
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2022-03-10
  • 录用日期:  2022-03-25
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回