EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF RC BEAM STRENGTHENED WITH SELF-REPAIRING SMA/ECC COMPOSITES MATERIALS
-
摘要: 为了提高既有RC构件的承载能力、损伤自修复能力,提升其安全与使用性能,该文提出采用超弹性形状记忆合金(Shape memory alloy, 简称SMA)和工程水泥基复合材料(Engineered cementitious composites, 简称ECC)复合加固钢筋混凝土梁的方法。设计并制作了4种试验梁以对比不同增强材料加固效果,通过低周单向循环加载试验,分析了不同材料加固试验梁的破坏形态、承载力、耗能性能和自修复能力等性能的影响。研究结果表明:SMA/ECC复合加固梁不仅提高了承载能力,且具有较好的延性和变形能力,同时具有优越的自修复性能。考虑ECC拉伸应变硬化特性,建立了ECC加固梁的受弯承载力计算方法,且计算值与试验值吻合较好。Abstract: In order to improve the bearing capacity and damage self-repairing capacity as well as the safety and serviceability of existing RC members, a reinforcing method for strengthening RC beams using Shape Memory Alloy (SMA) and Engineered Cementitious Composites (ECC) was proposed. Four kinds of test beams were designed and fabricated, and the effects of different materials on the failure modes, bearing capacity, energy dissipation and self-repairing capability of the experimental beams were analyzed through the low-cycle cyclic loading test. The results show that SMA/ECC composite reinforced beam has significantly improved the bearing capacity, the ductility and deformation capacity as well as the self-repairing capability. Finally, by considering the ECC tensile strain hardening characteristics, a calculation method of the flexural capacity of ECC reinforced beams was proposed, and the calculated results were in good agreement with the experimental data.
-
表 1 试件基本参数
Table 1. Design parameters of specimens
试件编号 加固材料 截面尺寸/mm 梁长/mm 配筋 SJ-1 钢筋、混凝土 120×110 1000 2根钢筋 SJ-2 钢筋、ECC 120×110 1000 2根钢筋 SJ-3 SMA、ECC 120×110 1000 3根SMA SJ-4 SMA、混凝土 120×110 1000 3根SMA 表 2 ECC配合比
Table 2. Mix proportion of ECC
成分 水泥 水 粉煤灰 细砂 外加剂 PVA纤维/(%) 比例 1 1.43 1.43 0.86 0.18 2 表 3 ECC拉伸试验结果
Table 3. Tensile test results of ECC specimens
试件编号 第1组 第2组 第3组 平均值 抗拉强度/MPa 4.26 3.89 3.46 3.87 表 4 纵筋屈服强度
Table 4. Yield strength of longitudinal reinforcement
材料 SMA 受拉纵筋 受压纵筋 屈服强度/MPa 296.17 397.17 397.17 表 5 混凝土强度
Table 5. concrete strength
材料 混凝土 ECC 抗压强度/MPa 17.48 18.21 抗拉强度/MPa − 5.10 表 6 试件承载力计算值与试验值比较
Table 6. The bearing capacity of specimens calculated value and experimental value
试件编号 加固材料 加固梁承载力计算值${{M} }_{\mathrm{c}\mathrm{u} }$ 加固梁承载力实验值${{M} }_{\mathrm{t}\mathrm{u} }$ 计算值与实验值的比值${{M} }_{\mathrm{c}\mathrm{u} }/{{M} }_{\mathrm{t}\mathrm{u} }$ SJ-1 钢筋、混凝土 2.75 2.96 0.92 SJ-2 钢筋、ECC 2.75 2.93 0.94 SJ-3 SMA、ECC 2.51 2.78 0.90 SJ-4 SMA、混凝土 2.51 2.76 0.91 -
[1] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999.WU Zhongwei, LIAN Huizhen. High performance concrete [M]. Beijing: China Railway Press, 1999. (in Chinese) [2] TABRIZIKAHOU A, KUCZMA M, NOWOTARSKI P, et al. Sustainability of civil structures through the application of smart materials: A review [J]. Materials, 2021, 14(17): 1 − 29. [3] QIU C X, ZHU S Y. Shake table test and numerical study of self-centering steel frame with SMA braces [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(1): 117 − 137. [4] 胡淑军, 顾琦, 姜国青, 等. 一种新型自复位SMA支撑的抗震性能试验研究[J]. 工程力学, 2021, 38(1): 109 − 118, 142. doi: 10.6052/j.issn.1000-4750.2020.02.0087HU Shujun, GU Qi, JIANG Guoqing, et al. Experimental study on seismic performance for an innovative self-centering SMA brace [J]. Engineering Mechanics, 2021, 38(1): 109 − 118, 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0087 [5] 钱辉, 李宏男, 任文杰, 等. 形状记忆合金复合摩擦阻尼器设计及试验研究[J]. 建筑结构学报, 2011, 32(9): 58 − 64. doi: 10.14006/j.jzjgxb.2011.09.008QIAN Hui, LI Hongnan, REN Wenjie, et al. Design and experimental study of shape memory alloy composite friction damper [J]. Journal of Building Structures, 2011, 32(9): 58 − 64. (in Chinese) doi: 10.14006/j.jzjgxb.2011.09.008 [6] 李宏男, 钱辉, 宋钢兵, 等. 一种新型 SMA 阻尼器的试验和数值模拟研究[J]. 振动工程学报, 2008, 21(2): 179 − 184. doi: 10.3969/j.issn.1004-4523.2008.02.014LI Hongnan, QIAN Hui, SONG Gangbing, et al. Experimental and numerical simulation study of a new type of SMA damper [J]. Chinese Journal of Vibration Engineering, 2008, 21(2): 179 − 184. (in Chinese) doi: 10.3969/j.issn.1004-4523.2008.02.014 [7] 薛素铎, 石光磊, 庄鹏. SMA复合摩擦阻尼器性能的试验研究[J]. 地震工程与工程振动, 2007, 27(2): 145 − 151. doi: 10.3969/j.issn.1000-1301.2007.02.023XUE Suze, SHI Guanglei, ZHUANG Peng. Performance testing of SMA incorporated friction dampers [J]. Earthquake Engineering and Engineering Dynamics, 2007, 27(2): 145 − 151. (in Chinese) doi: 10.3969/j.issn.1000-1301.2007.02.023 [8] WANG B, ZHU S. Superelastic SMA U-shaped dampers with self-centering functions [J]. Smart Materials and Structures, 2018, 27(5): 55003. doi: 10.1088/1361-665X/aab52d [9] WILDE K, GARDONI P, FUJINO Y. Base isolation system with shape memory alloy device for elevated highway bridges [J]. Engineering Structures, 2000, 22(3): 222 − 229. doi: 10.1016/S0141-0296(98)00097-2 [10] 江世哲. 形状记忆合金自复位隔震结构地震反应分析[D]. 西安: 西安建筑科技大学, 2004.JINAG Shizhe. The earthquake response analysis of re-centring isolation structure with shape memory alloys [D]. Xi’an: Xi’an University of Architecture and Technology, 2004. (in Chinese) [11] 刘海卿, 王学庆, 刘嘉. SMA绞线-叠层橡胶复合支座振动台试验研究[J]. 地震工程与工程振动, 2008(3): 152 − 156. doi: 10.13197/j.eeev.2008.03.011LIU Haiqing, WANG Xueqing, LIU Jia. The shaking table test of an SMA strands-composite bearing [J]. Earthquake Engineering and Engineering Dynamics, 2008(3): 152 − 156. (in Chinese) doi: 10.13197/j.eeev.2008.03.011 [12] 庄鹏, 薛素铎, 韩淼. SMA弹簧-摩擦支座滞回性能试验研究[J]. 地震工程与工程振动, 2016, 36(4): 163 − 169.ZHUANG Peng, XUE Suze, HAN Miao. Experimental study of hysteretic performance of SMA spring-friction bearing [J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(4): 163 − 169. (in Chinese) [13] 程光明. 基于形状记忆合金的自复位钢连梁研究[D]. 杭州: 浙江大学, 2018.CHENG Guangming. Study on self-centering steel link beams based on shape memory alloy [D]. Hangzhou: Zhejiang University, 2018. (in Chinese) [14] 钱辉, 徐建, 张勋, 等. 带自复位耗能连梁的剪力墙结构的抗震性能[J]. 土木与环境工程学报, 2021, 43(3): 9 − 15.QIAN Hui, XU Jian, ZHANG Xun, et al. Seismic performance of shear wall structure with self-centering energy-dissipating coupling beam [J]. Journal of Civil and Environmental Engineering, 2021, 43(3): 9 − 15. (in Chinese) [15] 崔迪, 李宏男, 宋钢兵. 形状记忆合金混凝土梁力学性能试验研究[J]. 工程力学, 2010, 27(2): 117 − 123.CUI Di, LI Hongnan, SONG Gangbing. Behavior of SMA reinforced concrete beam [J]. Engineering Mechanics, 2010, 27(2): 117 − 123. (in Chinese) [16] ELBAHY Y I, YOUSSEF M A. Flexural behaviour of superelastic shape memory alloy reinforced concrete beams during loading and unloading stages [J]. Engineering Structures, 2019, 181: 246 − 259. doi: 10.1016/j.engstruct.2018.12.001 [17] AZADPOUR F, MAGHSOUDI A A. Experimental and analytical investigation of continuous RC beams strengthened by SMA strands under cyclic loading [J]. Construction and Building Materials, 2020, 239: 117730. doi: 10.1016/j.conbuildmat.2019.117730 [18] SAIIDI M S, WANG H. Exploratory study of seismic response of concrete columns with shape memory alloys reinforcement [J]. ACI Structural Journal, 2006, 103(3): 436 − 443. [19] BILLAH A H M M, ALAM M S. Probabilistic seismic risk assessment of concrete bridge piers reinforced with different types of shape memory alloys [J]. Engineering Structures, 2018, 162: 97 − 108. doi: 10.1016/j.engstruct.2018.02.034 [20] ZHENG Y, DONG Y. Performance-based assessment of bridges with steel-SMA reinforced piers in a life-cycle context by numerical approach [J]. Bulletin of Earthquake Engineering, 2019, 17(3): 1667 − 1688. doi: 10.1007/s10518-018-0510-x [21] WANG B, ZHU S. Seismic behavior of self-centering reinforced concrete wall enabled by superelastic shape memory alloy bars [J]. Bulletin of Earthquake Engineering, 2018, 16(1): 479 − 502. doi: 10.1007/s10518-017-0213-8 [22] 蔺明宇. 铁基SMA混凝土剪力墙可恢复变形性能研究[D]. 沈阳: 沈阳建筑大学, 2018.LIN Mingyu. Research on deformation recoverability of Fe-based SMA-reinforced concrete shear walls [D]. Shenyang: Shenyang Jianzhu University, 2018. (in Chinese) [23] YOUSSEF M A, ALAM M S, NEHDI M. Experimental investigation on the seismic behavior of beam-column joints reinforced with superelastic shape memory alloys [J]. Journal of Earthquake Engineering, 2008, 12(7): 1205 − 1222. doi: 10.1080/13632460802003082 [24] 肖正锋. 形状记忆合金混凝土梁柱节点抗震性能研究[D]. 沈阳: 沈阳建筑大学, 2018.XIAO Zhengfeng. Seismic performances of RC Beam-column joints reinforced with shape memory alloy tendons [D]. Shenyang: Shenyang Jianzhu University, 2018. (in Chinese) [25] 钱辉, 李宗翱, 裴金召, 等. 自复位超弹性 SMA 筋梁柱节点数值模拟研究[J]. 工程力学, 2020, 37(11): 135 − 145. doi: 10.6052/j.issn.1000-4750.2019.12.0791QIAN Hui, LI Zongao, PEI Jinzhao, et al. Numerical simulation study of self-resetting superelastic SMA reinforcement beam-column joints [J]. Engineering Mechanics, 2020, 37(11): 135 − 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0791 [26] BRANCO M, GONÇALVES A, GUERREIRO L. Cyclic behavior of composite timber-masonry wall in quasi-dynamic conditions reinforced with superelastic damper [J]. Construction and Building Materials, 2014, 52: 166 − 176. doi: 10.1016/j.conbuildmat.2013.10.095 [27] SHAHVERDI M, CZADERSKI C, MOTAVALLI M. Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams [J]. Construction and Building Materials, 2016, 112: 28 − 38. doi: 10.1016/j.conbuildmat.2016.02.174 [28] 任泽鹏. 超弹性形状记忆合金丝约束RC短柱抗剪性能试验研究[D]. 郑州: 郑州大学, 2016.REN Zepeng. Experimental study on shear performance of RC short column restrained by superelastic shape memory alloy wire [D]. Zhengzhou: Zhengzhou University, 2016. (in Chinese) [29] ZHANG J, LEUNG C K Y, CHEUNG Y N. Flexural performance of layered ECC-concrete composite beam [J]. Composites Science Technology, 2006, 66(11/12): 1501 − 1512. [30] YUAN F, PAN J L, LEUNG C K Y. Flexural behaviors of ECC and concrete/ECC composite beams reinforced with basalt fiber-reinforced polymer [J]. Journal of Composites for Construction, 2013, 17(5): 591 − 602. doi: 10.1061/(ASCE)CC.1943-5614.0000381 [31] DING Y, YU K, YU J, et al. Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to ending-experimental study [J]. Construction and Building Materials, 2018, 177: 102 − 115. doi: 10.1016/j.conbuildmat.2018.05.122 [32] 徐梁晋, 王义博, 张志刚, 等. 预制ECC管混凝土桥墩拟静力试验研究[J]. 工程力学, 2021, 38(5): 229 − 238. doi: 10.6052/j.issn.1000-4750.2021.01.0055XU Liangjin, WANG Yibo, ZHANG Zhigang, et al. Quasi-static test study on precast ECC concrete-filled tubular bridge piers [J]. Engineering Mechanics, 2021, 38(5): 229 − 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0055 [33] 杨益. 塑性铰区采用PVA-ECC材料剪力墙抗震性能试验及非线性有限元分析[D]. 西安: 西安建筑科技大学, 2013.YANG Yi. Experimental research and nonlinear finite element analysis on seismic behavior of the shear wall with PVA-ECC in plastic hinge region [D]. Xi’an: Xi’an University of Architecture and Technology, 2013. (in Chinese) [34] SAID S H, ABDUL RAZAK H. Structural behavior of RC engineered cementitious composite (ECC) exterior beam-column joints under reversed cyclic loading [J]. Construction and Building Materials, 2016, 107: 226 − 234. doi: 10.1016/j.conbuildmat.2016.01.001 [35] LI X P, LI M, SONG G B. Energy-dissipating and self-repairing SMA-ECC composite material system [J]. Smart Materials and Structures, 2015, 24(2): 1 − 15. [36] 钱辉, 王玉敬, 康莉萍. 复合配筋增强工程水泥基复合材料梁受弯性能试验研究[J]. 建筑结构学报, 2021, 42(增刊 1): 277 − 283. doi: 10.14006/j.jzjgxb.2021.S1.0031QIAN Hui, WANG Yujing, KANG Liping. Experimental study on flexural behaviors of engineered cementitious composites beams reinforced with hybrid bars [J]. Journal of Building Structures, 2021, 42(Suppl 1): 277 − 283. (in Chinese) doi: 10.14006/j.jzjgxb.2021.S1.0031 [37] WANG H Y. A study of RC columns with shape memory alloy and engineered cementitious composites [D]. Reno: University of Nevada, 2005. [38] HOSSEINI F, GENCTURK B, LAHPOUR S, et al. An experimental investigation of innovative bridge columns with engineered cementitious composites and Cu-Al-Mn super-elastic alloys [J]. Smart Materials and Structures, 2015, 24(8): 1 − 20. [39] 钱辉, 康莉萍, 郭院成, 等. 基于SMA和ECC复合材料的功能自恢复剪力墙抗震性能试验研究[J]. 土木工程学报, 2020, 53(10): 51 − 61.QIAN Hui, KANG Liping, GUO Yuancheng, et al. Experimental study on seismic performance of functional self-healing shear walls based on SMA and ECC composite materials [J]. China Civil Engineering Journal, 2020, 53(10): 51 − 61. (in Chinese) [40] 钱辉, 裴金召, 李宗翱, 等. 基于 SMA/ECC 的新型自复位框架节点抗震性能试验研究[J]. 土木工程学报, 2020, 53(11): 64 − 73.QIAN Hui, PEI Jinzhao, LI Zongao, et al. Experimental study on seismic performance of new self-resetting frame joints based on SMA/ECC [J]. China Civil Engineering Journal, 2020, 53(11): 64 − 73. (in Chinese) [41] 王伟, 邵红亮. 不同直径NiTi形状记忆合金棒材的超弹性试验研究[J]. 结构工程师, 2014, 6(30): 168 − 174.WANG Wei, SHAO Hongliang. Experimental investigation on mechanical properties of shape memory alloy bars in different sizes [J]. Structural Engineers, 2014, 6(30): 168 − 174. (in Chinese) [42] GB 50367−2013, 混凝土结构加固设计规范[S]. 北京: 中国建筑工业出版社, 2013.GB 50367−2013, Design code for reinforcement of concrete structures [S]. Beijing: China Architecture Industry Press, 2013. (in Chinese) [43] 李庆华. 配筋超高韧性水泥基复合材料受弯构件计算理论与试验研究[D]. 大连: 大连理工大学, 2009.LI Qinghua. Theoretical analysis and experimental investigation on bending performances of reinforced ultra high toughness cementitious composites [D]. Dalian: Dalian University of Technology, 2009. (in Chinese) -