留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自修复SMA/ECC复合材料加固RC梁受弯性能试验研究

钱辉 陈程 张庆元 康莉萍 赵军

钱辉, 陈程, 张庆元, 康莉萍, 赵军. 自修复SMA/ECC复合材料加固RC梁受弯性能试验研究[J]. 工程力学, 2023, 40(6): 73-84. doi: 10.6052/j.issn.1000-4750.2021.11.0871
引用本文: 钱辉, 陈程, 张庆元, 康莉萍, 赵军. 自修复SMA/ECC复合材料加固RC梁受弯性能试验研究[J]. 工程力学, 2023, 40(6): 73-84. doi: 10.6052/j.issn.1000-4750.2021.11.0871
QIAN Hui, CHEN Cheng, ZHANG Qing-yuan, KANG Li-ping, ZHAO Jun. EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF RC BEAM STRENGTHENED WITH SELF-REPAIRING SMA/ECC COMPOSITES MATERIALS[J]. Engineering Mechanics, 2023, 40(6): 73-84. doi: 10.6052/j.issn.1000-4750.2021.11.0871
Citation: QIAN Hui, CHEN Cheng, ZHANG Qing-yuan, KANG Li-ping, ZHAO Jun. EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF RC BEAM STRENGTHENED WITH SELF-REPAIRING SMA/ECC COMPOSITES MATERIALS[J]. Engineering Mechanics, 2023, 40(6): 73-84. doi: 10.6052/j.issn.1000-4750.2021.11.0871

自修复SMA/ECC复合材料加固RC梁受弯性能试验研究

doi: 10.6052/j.issn.1000-4750.2021.11.0871
基金项目: 国家自然科学基金项目(51987631,51478438)
详细信息
    作者简介:

    钱 辉(1978−),男,河南人,教授,博士,博导,主要从事智能材料与结构振动控制研究(E-mail: qianhui@zzu.edu.cn)

    陈 程(1996−),女,河南人,硕士生,主要从事智能材料与结构振动控制研究(E-mail: 18839116627@163.com)

    张庆元(1992−),女,河南人,硕士生,主要从事智能材料与结构振动控制研究(E-mail: 249511269@qq.com)

    赵 军(1971−),男,河南人,教授,博士,博导,主要从事结构工程研究(E-mail: zhaoj@zzu.edu.cn)

    通讯作者:

    康莉萍(1988−),女,河南人,博士,主要从事高性能结构与结构振动控制研究(E-mail: kangliping2010@163.com)

  • 中图分类号: TU37

EXPERIMENTAL STUDY ON FLEXURAL BEHAVIOR OF RC BEAM STRENGTHENED WITH SELF-REPAIRING SMA/ECC COMPOSITES MATERIALS

  • 摘要: 为了提高既有RC构件的承载能力、损伤自修复能力,提升其安全与使用性能,该文提出采用超弹性形状记忆合金(Shape memory alloy, 简称SMA)和工程水泥基复合材料(Engineered cementitious composites, 简称ECC)复合加固钢筋混凝土梁的方法。设计并制作了4种试验梁以对比不同增强材料加固效果,通过低周单向循环加载试验,分析了不同材料加固试验梁的破坏形态、承载力、耗能性能和自修复能力等性能的影响。研究结果表明:SMA/ECC复合加固梁不仅提高了承载能力,且具有较好的延性和变形能力,同时具有优越的自修复性能。考虑ECC拉伸应变硬化特性,建立了ECC加固梁的受弯承载力计算方法,且计算值与试验值吻合较好。
  • 图  1  加固构件形状及尺寸

    Figure  1.  Shape and dimension of the specimen

    图  2  试件制作过程

    Figure  2.  Manufacture process of the specimen

    图  3  试件的横截面和加固方案

    Figure  3.  Cross section and reinforcement details of specimens

    图  4  SMA棒材拉伸试验

    Figure  4.  Tensile test on SMA bar

    图  5  SMA棒应力-应变关系曲线

    Figure  5.  Stress-strain curves of SMA bar

    图  6  ECC受拉应力-应变曲线

    Figure  6.  Stress-strain curve of ECC

    图  7  加载装置

    Figure  7.  Test setup

    图  8  加载制度示意图

    Figure  8.  Schematic diagram of loading procedure

    图  9  ECC多缝开裂特征

    Figure  9.  Multiple cracking modes of ECC

    图  10  试件破坏实况

    Figure  10.  Specimen failure

    图  11  荷载-位移曲线

    Figure  11.  Load-displacement curve

    图  12  骨架曲线

    Figure  12.  Skeleton curve

    图  13  加卸载最大裂缝宽度曲线

    Figure  13.  Maximum fracture width curve under loading and unloading

    图  14  加卸载裂缝数量曲线

    Figure  14.  Number of fissures during loading and unloading

    图  15  加卸载跨中挠度曲线

    Figure  15.  Midspan deflection curve of loading and unloading

    图  16  试件耗能能力

    Figure  16.  Energy dissipation capacity under loading and unloading

    图  17  钢筋应变-荷载关系曲线

    Figure  17.  Strain-load curve of steel bar

    图  18  ECC受拉应力-应变关系曲线简化图

    Figure  18.  ECC tensile stress-strain curve

    表  1  试件基本参数

    Table  1.   Design parameters of specimens

    试件编号加固材料截面尺寸/mm梁长/mm配筋
    SJ-1钢筋、混凝土120×11010002根钢筋
    SJ-2钢筋、ECC120×11010002根钢筋
    SJ-3SMA、ECC120×11010003根SMA
    SJ-4SMA、混凝土120×11010003根SMA
    下载: 导出CSV

    表  2  ECC配合比

    Table  2.   Mix proportion of ECC

    成分水泥粉煤灰细砂外加剂PVA纤维/(%)
    比例11.431.430.860.182
    下载: 导出CSV

    表  3  ECC拉伸试验结果

    Table  3.   Tensile test results of ECC specimens

    试件编号第1组第2组第3组平均值
    抗拉强度/MPa4.263.893.463.87
    下载: 导出CSV

    表  4  纵筋屈服强度

    Table  4.   Yield strength of longitudinal reinforcement

    材料SMA受拉纵筋受压纵筋
    屈服强度/MPa296.17397.17397.17
    下载: 导出CSV

    表  5  混凝土强度

    Table  5.   concrete strength

    材料混凝土ECC
    抗压强度/MPa17.4818.21
    抗拉强度/MPa5.10
    下载: 导出CSV

    表  6  试件承载力计算值与试验值比较

    Table  6.   The bearing capacity of specimens calculated value and experimental value

    试件编号加固材料加固梁承载力计算值${{M} }_{\mathrm{c}\mathrm{u} }$加固梁承载力实验值${{M} }_{\mathrm{t}\mathrm{u} }$计算值与实验值的比值${{M} }_{\mathrm{c}\mathrm{u} }/{{M} }_{\mathrm{t}\mathrm{u} }$
    SJ-1钢筋、混凝土2.752.960.92
    SJ-2钢筋、ECC2.752.930.94
    SJ-3SMA、ECC2.512.780.90
    SJ-4SMA、混凝土2.512.760.91
    下载: 导出CSV
  • [1] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999.

    WU Zhongwei, LIAN Huizhen. High performance concrete [M]. Beijing: China Railway Press, 1999. (in Chinese)
    [2] TABRIZIKAHOU A, KUCZMA M, NOWOTARSKI P, et al. Sustainability of civil structures through the application of smart materials: A review [J]. Materials, 2021, 14(17): 1 − 29.
    [3] QIU C X, ZHU S Y. Shake table test and numerical study of self-centering steel frame with SMA braces [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(1): 117 − 137.
    [4] 胡淑军, 顾琦, 姜国青, 等. 一种新型自复位SMA支撑的抗震性能试验研究[J]. 工程力学, 2021, 38(1): 109 − 118, 142. doi: 10.6052/j.issn.1000-4750.2020.02.0087

    HU Shujun, GU Qi, JIANG Guoqing, et al. Experimental study on seismic performance for an innovative self-centering SMA brace [J]. Engineering Mechanics, 2021, 38(1): 109 − 118, 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0087
    [5] 钱辉, 李宏男, 任文杰, 等. 形状记忆合金复合摩擦阻尼器设计及试验研究[J]. 建筑结构学报, 2011, 32(9): 58 − 64. doi: 10.14006/j.jzjgxb.2011.09.008

    QIAN Hui, LI Hongnan, REN Wenjie, et al. Design and experimental study of shape memory alloy composite friction damper [J]. Journal of Building Structures, 2011, 32(9): 58 − 64. (in Chinese) doi: 10.14006/j.jzjgxb.2011.09.008
    [6] 李宏男, 钱辉, 宋钢兵, 等. 一种新型 SMA 阻尼器的试验和数值模拟研究[J]. 振动工程学报, 2008, 21(2): 179 − 184. doi: 10.3969/j.issn.1004-4523.2008.02.014

    LI Hongnan, QIAN Hui, SONG Gangbing, et al. Experimental and numerical simulation study of a new type of SMA damper [J]. Chinese Journal of Vibration Engineering, 2008, 21(2): 179 − 184. (in Chinese) doi: 10.3969/j.issn.1004-4523.2008.02.014
    [7] 薛素铎, 石光磊, 庄鹏. SMA复合摩擦阻尼器性能的试验研究[J]. 地震工程与工程振动, 2007, 27(2): 145 − 151. doi: 10.3969/j.issn.1000-1301.2007.02.023

    XUE Suze, SHI Guanglei, ZHUANG Peng. Performance testing of SMA incorporated friction dampers [J]. Earthquake Engineering and Engineering Dynamics, 2007, 27(2): 145 − 151. (in Chinese) doi: 10.3969/j.issn.1000-1301.2007.02.023
    [8] WANG B, ZHU S. Superelastic SMA U-shaped dampers with self-centering functions [J]. Smart Materials and Structures, 2018, 27(5): 55003. doi: 10.1088/1361-665X/aab52d
    [9] WILDE K, GARDONI P, FUJINO Y. Base isolation system with shape memory alloy device for elevated highway bridges [J]. Engineering Structures, 2000, 22(3): 222 − 229. doi: 10.1016/S0141-0296(98)00097-2
    [10] 江世哲. 形状记忆合金自复位隔震结构地震反应分析[D]. 西安: 西安建筑科技大学, 2004.

    JINAG Shizhe. The earthquake response analysis of re-centring isolation structure with shape memory alloys [D]. Xi’an: Xi’an University of Architecture and Technology, 2004. (in Chinese)
    [11] 刘海卿, 王学庆, 刘嘉. SMA绞线-叠层橡胶复合支座振动台试验研究[J]. 地震工程与工程振动, 2008(3): 152 − 156. doi: 10.13197/j.eeev.2008.03.011

    LIU Haiqing, WANG Xueqing, LIU Jia. The shaking table test of an SMA strands-composite bearing [J]. Earthquake Engineering and Engineering Dynamics, 2008(3): 152 − 156. (in Chinese) doi: 10.13197/j.eeev.2008.03.011
    [12] 庄鹏, 薛素铎, 韩淼. SMA弹簧-摩擦支座滞回性能试验研究[J]. 地震工程与工程振动, 2016, 36(4): 163 − 169.

    ZHUANG Peng, XUE Suze, HAN Miao. Experimental study of hysteretic performance of SMA spring-friction bearing [J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(4): 163 − 169. (in Chinese)
    [13] 程光明. 基于形状记忆合金的自复位钢连梁研究[D]. 杭州: 浙江大学, 2018.

    CHENG Guangming. Study on self-centering steel link beams based on shape memory alloy [D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    [14] 钱辉, 徐建, 张勋, 等. 带自复位耗能连梁的剪力墙结构的抗震性能[J]. 土木与环境工程学报, 2021, 43(3): 9 − 15.

    QIAN Hui, XU Jian, ZHANG Xun, et al. Seismic performance of shear wall structure with self-centering energy-dissipating coupling beam [J]. Journal of Civil and Environmental Engineering, 2021, 43(3): 9 − 15. (in Chinese)
    [15] 崔迪, 李宏男, 宋钢兵. 形状记忆合金混凝土梁力学性能试验研究[J]. 工程力学, 2010, 27(2): 117 − 123.

    CUI Di, LI Hongnan, SONG Gangbing. Behavior of SMA reinforced concrete beam [J]. Engineering Mechanics, 2010, 27(2): 117 − 123. (in Chinese)
    [16] ELBAHY Y I, YOUSSEF M A. Flexural behaviour of superelastic shape memory alloy reinforced concrete beams during loading and unloading stages [J]. Engineering Structures, 2019, 181: 246 − 259. doi: 10.1016/j.engstruct.2018.12.001
    [17] AZADPOUR F, MAGHSOUDI A A. Experimental and analytical investigation of continuous RC beams strengthened by SMA strands under cyclic loading [J]. Construction and Building Materials, 2020, 239: 117730. doi: 10.1016/j.conbuildmat.2019.117730
    [18] SAIIDI M S, WANG H. Exploratory study of seismic response of concrete columns with shape memory alloys reinforcement [J]. ACI Structural Journal, 2006, 103(3): 436 − 443.
    [19] BILLAH A H M M, ALAM M S. Probabilistic seismic risk assessment of concrete bridge piers reinforced with different types of shape memory alloys [J]. Engineering Structures, 2018, 162: 97 − 108. doi: 10.1016/j.engstruct.2018.02.034
    [20] ZHENG Y, DONG Y. Performance-based assessment of bridges with steel-SMA reinforced piers in a life-cycle context by numerical approach [J]. Bulletin of Earthquake Engineering, 2019, 17(3): 1667 − 1688. doi: 10.1007/s10518-018-0510-x
    [21] WANG B, ZHU S. Seismic behavior of self-centering reinforced concrete wall enabled by superelastic shape memory alloy bars [J]. Bulletin of Earthquake Engineering, 2018, 16(1): 479 − 502. doi: 10.1007/s10518-017-0213-8
    [22] 蔺明宇. 铁基SMA混凝土剪力墙可恢复变形性能研究[D]. 沈阳: 沈阳建筑大学, 2018.

    LIN Mingyu. Research on deformation recoverability of Fe-based SMA-reinforced concrete shear walls [D]. Shenyang: Shenyang Jianzhu University, 2018. (in Chinese)
    [23] YOUSSEF M A, ALAM M S, NEHDI M. Experimental investigation on the seismic behavior of beam-column joints reinforced with superelastic shape memory alloys [J]. Journal of Earthquake Engineering, 2008, 12(7): 1205 − 1222. doi: 10.1080/13632460802003082
    [24] 肖正锋. 形状记忆合金混凝土梁柱节点抗震性能研究[D]. 沈阳: 沈阳建筑大学, 2018.

    XIAO Zhengfeng. Seismic performances of RC Beam-column joints reinforced with shape memory alloy tendons [D]. Shenyang: Shenyang Jianzhu University, 2018. (in Chinese)
    [25] 钱辉, 李宗翱, 裴金召, 等. 自复位超弹性 SMA 筋梁柱节点数值模拟研究[J]. 工程力学, 2020, 37(11): 135 − 145. doi: 10.6052/j.issn.1000-4750.2019.12.0791

    QIAN Hui, LI Zongao, PEI Jinzhao, et al. Numerical simulation study of self-resetting superelastic SMA reinforcement beam-column joints [J]. Engineering Mechanics, 2020, 37(11): 135 − 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0791
    [26] BRANCO M, GONÇALVES A, GUERREIRO L. Cyclic behavior of composite timber-masonry wall in quasi-dynamic conditions reinforced with superelastic damper [J]. Construction and Building Materials, 2014, 52: 166 − 176. doi: 10.1016/j.conbuildmat.2013.10.095
    [27] SHAHVERDI M, CZADERSKI C, MOTAVALLI M. Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams [J]. Construction and Building Materials, 2016, 112: 28 − 38. doi: 10.1016/j.conbuildmat.2016.02.174
    [28] 任泽鹏. 超弹性形状记忆合金丝约束RC短柱抗剪性能试验研究[D]. 郑州: 郑州大学, 2016.

    REN Zepeng. Experimental study on shear performance of RC short column restrained by superelastic shape memory alloy wire [D]. Zhengzhou: Zhengzhou University, 2016. (in Chinese)
    [29] ZHANG J, LEUNG C K Y, CHEUNG Y N. Flexural performance of layered ECC-concrete composite beam [J]. Composites Science Technology, 2006, 66(11/12): 1501 − 1512.
    [30] YUAN F, PAN J L, LEUNG C K Y. Flexural behaviors of ECC and concrete/ECC composite beams reinforced with basalt fiber-reinforced polymer [J]. Journal of Composites for Construction, 2013, 17(5): 591 − 602. doi: 10.1061/(ASCE)CC.1943-5614.0000381
    [31] DING Y, YU K, YU J, et al. Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to ending-experimental study [J]. Construction and Building Materials, 2018, 177: 102 − 115. doi: 10.1016/j.conbuildmat.2018.05.122
    [32] 徐梁晋, 王义博, 张志刚, 等. 预制ECC管混凝土桥墩拟静力试验研究[J]. 工程力学, 2021, 38(5): 229 − 238. doi: 10.6052/j.issn.1000-4750.2021.01.0055

    XU Liangjin, WANG Yibo, ZHANG Zhigang, et al. Quasi-static test study on precast ECC concrete-filled tubular bridge piers [J]. Engineering Mechanics, 2021, 38(5): 229 − 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.01.0055
    [33] 杨益. 塑性铰区采用PVA-ECC材料剪力墙抗震性能试验及非线性有限元分析[D]. 西安: 西安建筑科技大学, 2013.

    YANG Yi. Experimental research and nonlinear finite element analysis on seismic behavior of the shear wall with PVA-ECC in plastic hinge region [D]. Xi’an: Xi’an University of Architecture and Technology, 2013. (in Chinese)
    [34] SAID S H, ABDUL RAZAK H. Structural behavior of RC engineered cementitious composite (ECC) exterior beam-column joints under reversed cyclic loading [J]. Construction and Building Materials, 2016, 107: 226 − 234. doi: 10.1016/j.conbuildmat.2016.01.001
    [35] LI X P, LI M, SONG G B. Energy-dissipating and self-repairing SMA-ECC composite material system [J]. Smart Materials and Structures, 2015, 24(2): 1 − 15.
    [36] 钱辉, 王玉敬, 康莉萍. 复合配筋增强工程水泥基复合材料梁受弯性能试验研究[J]. 建筑结构学报, 2021, 42(增刊 1): 277 − 283. doi: 10.14006/j.jzjgxb.2021.S1.0031

    QIAN Hui, WANG Yujing, KANG Liping. Experimental study on flexural behaviors of engineered cementitious composites beams reinforced with hybrid bars [J]. Journal of Building Structures, 2021, 42(Suppl 1): 277 − 283. (in Chinese) doi: 10.14006/j.jzjgxb.2021.S1.0031
    [37] WANG H Y. A study of RC columns with shape memory alloy and engineered cementitious composites [D]. Reno: University of Nevada, 2005.
    [38] HOSSEINI F, GENCTURK B, LAHPOUR S, et al. An experimental investigation of innovative bridge columns with engineered cementitious composites and Cu-Al-Mn super-elastic alloys [J]. Smart Materials and Structures, 2015, 24(8): 1 − 20.
    [39] 钱辉, 康莉萍, 郭院成, 等. 基于SMA和ECC复合材料的功能自恢复剪力墙抗震性能试验研究[J]. 土木工程学报, 2020, 53(10): 51 − 61.

    QIAN Hui, KANG Liping, GUO Yuancheng, et al. Experimental study on seismic performance of functional self-healing shear walls based on SMA and ECC composite materials [J]. China Civil Engineering Journal, 2020, 53(10): 51 − 61. (in Chinese)
    [40] 钱辉, 裴金召, 李宗翱, 等. 基于 SMA/ECC 的新型自复位框架节点抗震性能试验研究[J]. 土木工程学报, 2020, 53(11): 64 − 73.

    QIAN Hui, PEI Jinzhao, LI Zongao, et al. Experimental study on seismic performance of new self-resetting frame joints based on SMA/ECC [J]. China Civil Engineering Journal, 2020, 53(11): 64 − 73. (in Chinese)
    [41] 王伟, 邵红亮. 不同直径NiTi形状记忆合金棒材的超弹性试验研究[J]. 结构工程师, 2014, 6(30): 168 − 174.

    WANG Wei, SHAO Hongliang. Experimental investigation on mechanical properties of shape memory alloy bars in different sizes [J]. Structural Engineers, 2014, 6(30): 168 − 174. (in Chinese)
    [42] GB 50367−2013, 混凝土结构加固设计规范[S]. 北京: 中国建筑工业出版社, 2013.

    GB 50367−2013, Design code for reinforcement of concrete structures [S]. Beijing: China Architecture Industry Press, 2013. (in Chinese)
    [43] 李庆华. 配筋超高韧性水泥基复合材料受弯构件计算理论与试验研究[D]. 大连: 大连理工大学, 2009.

    LI Qinghua. Theoretical analysis and experimental investigation on bending performances of reinforced ultra high toughness cementitious composites [D]. Dalian: Dalian University of Technology, 2009. (in Chinese)
  • 加载中
图(18) / 表(6)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  64
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2022-04-18
  • 网络出版日期:  2022-08-12
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回