[1] |
QIU B, KANG Q, KANG G, et al. Rate-dependent transformation ratcheting-fatigue interaction of super-elastic NiTi alloy under uniaxial and torsional loading: Experimental observation [J]. International Journal of Fatigue, 2019, 127(10): 470 − 478.
|
[2] |
CARVALHO A, MONTALVÃO D, FREITAS M, et al. Determination of the rotary fatigue life of NiTi alloy wires [J]. Theoretical and Applied Fracture Mechanics, 2016, 85: 37 − 44. doi: 10.1016/j.tafmec.2016.08.010
|
[3] |
EARLY M, KELLY D J. The consequences of the mechanical environment of peripheral arteries for nitinol stenting [J]. Medical & Biological Engineering & Computing, 2011, 49(11): 1279 − 1288.
|
[4] |
MEOLI A, DORDONI E, PETRINI L, et al. Computational study of axial fatigue for peripheral nitinol stents [J]. Journal of Materials Engineering & Performance, 2014, 23(7): 2606 − 2613.
|
[5] |
LEI L, QI X, LI S, et al. Finite element analysis for fatigue behavior of a self-expanding Nitinol peripheral stent under physiological biomechanical conditions [J]. Computers in Biology and Medicine, 2018, 104: 205 − 214.
|
[6] |
DORDONI E, MEOLI A, WU W, et al. Fatigue behavior of Nitinol peripheral stents: the role of plaque shape studied with computational structural analysis [J]. Medical Engineering & Physics, 2014, 36(7): 842 − 849.
|
[7] |
徐江. 冠状动脉支架断裂的力学机理研究[D]. 西安: 西南交通大学, 2018.XUE Jiang. Research on the mechanical mechanism of coronary stent fracture [D]. Xi’an: Southwest Jiaotong University, 2018. (in Chinese)
|
[8] |
胡章頔. 医用镍钛合金自膨胀支架的结构设计及力学性能分析[D]. 西安: 西安理工大学, 2018.HU Zhangdi. Structrual design and mechanical property analysis of self-expanding nitinol stent [D]. Xi’an: Xi'an University of Technology, 2018. (in Chinese)
|
[9] |
GIBBS J M, PEÑA C S, BENENATI J F. Treating the diseased superficial femoral artery [J]. Techniques in Vascular and Interventional Radiology, 2010, 13: 37 − 42. doi: 10.1053/j.tvir.2009.10.005
|
[10] |
MOHAMED S, ZAGHLOUL M D, ELIZABETH A, et al. Poor runoff and distal coverage below the knee are associated with poor long-term outcomes following endovascular popliteal aneurysm repair [J]. Journal of Vascular Surgery, 2021, 74(1): 153 − 160.
|
[11] |
TAN M, TAKAHARA M, SOGA Y, et al. Three-year clinical outcomes following implantation of life stent self-expanding nitinol stents in patients with femoropopliteal artery lesions [J]. Angiology, 2021: 1 − 8.
|
[12] |
NAGL F, SIEKMEYER G, QUELLMALZ M, et al. A comparison of different nitinol material data sources for finite element analysis [J]. Journal of Materials Engineering & Performance, 2011, 20(4/5): 737 − 744.
|
[13] |
冯海全, 王淑彪, 王永刚, 等. 不同释放尺度下新型镍钛合金髂静脉支架力学性能和动物实验研究[J]. 生物医学工程学杂志, 2019, 36(6): 1024 − 1031.FENG Haiquan, WANG Shubiao, WANG Yonggang, et al. Study on mechanical properties of nitinol iliac vein stent and animal test under different release scales [J]. Journal of Biomedical Engineering, 2019, 36(6): 1024 − 1031. (in Chinese)
|
[14] |
高振宇. 医用镍钛合金支架结构的优化设计[D]. 大连: 大连理工大学, 2005.GAO Zhenyu. Structural optimization design of medical NiITi stent [D]. Dalian: Dalian University of Technology, 2005. (in Chinese)
|
[15] |
王惟颢, 冯海全, 朱明新, 等. 不同扩张尺度对非对称椎动脉支架力学性能影响的研究[J]. 工程力学, 2017, 34(3): 232 − 240. doi: 10.6052/j.issn.1000-4750.2015.09.0735WANG Weihao, FENG Haiquan, ZHU Mingxin, et al. Influence of different dilatation size on mechanical properties of asymmetric vertrbral artery stents [J]. Engineering Mechanics, 2017, 34(3): 232 − 240. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.09.0735
|
[16] |
于文博. 超弹性镍钛合金支架设计优化及有限元分析[D]. 西安: 西安电子科技大学, 2020.YU Wenbo. Design optimization and finite element analysis of superelastic nitinol stents [D]. Xi’an: Xidian University, 2020. (in Chinese)
|
[17] |
王越彤, 冯海全, 王晓天, 等. 两种工况下8中腔静脉滤器疲劳强度的对比研究[J]. 工程力学, 2020, 37(9): 230 − 239. doi: 10.6052/j.issn.1000-4750.2019.10.0590WANG Yuetong, FENG Haiquan, WANG Xiaotian, et al. Comparative study on fatigue strength of 8 kinds of vena cava filters under two working conditions [J]. Engineering Mechanics, 2020, 37(9): 230 − 239. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.10.0590
|
[18] |
江旭东, 李鹏飞, 刘铮, 等. 球囊扩张式血管支架介入对弯曲血管的生物力学损伤研究[J]. 工程力学, 2019, 36(2): 239 − 248. doi: 10.6052/j.issn.1000-4750.2017.12.0979JIANG Xudong, LI Pengfei, LIU Zheng, et al. Numerical investigation of biomechanical injure of curved vessels induced by intervened balloon expandable vascular stent [J]. Engineering Mechanics, 2019, 36(2): 239 − 248. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0979
|
[19] |
周更苏. 不同卧位测量下肢动脉血压的研究[J]. 中华互理杂志, 2002, 37(12): 892 − 893.ZHOU Gengsu. Research of the blood pressure in arterise of leg measured in various lying position [J]. Chinese Journal of Nursing, 2002, 37(12): 892 − 893. (in Chinese)
|
[20] |
JASON N, MACTAGGART, NICHOLAS Y, et al. Three dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion [J]. Journal of Biomechanics, 2014, 47(10): 2249 − 2256. doi: 10.1016/j.jbiomech.2014.04.053
|
[21] |
POULSON W, KAMENSKIY A, SEAS A, et al. Limb flesion induced axial compression and bending in human femoropopliteal artery segments [J]. Journal of Vascular Surgery, 2018, 67(2): 607 − 613. doi: 10.1016/j.jvs.2017.01.071
|
[22] |
CHENG C P, WILSON N M, HALLETT R L, et al. In vivo MR angiographic quantification of axial and twisting deformations of the superfical femoral artery resulting form maximum hip and knee flexion [J]. Journal of Vascular and Interventional Radiology, 2006, 17(6): 979 − 987. doi: 10.1097/01.RVI.0000220367.62137.E8
|
[23] |
STENTS I, SERVICES H. Guidance for industry and FDA staff non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems [R]. The United States: Food and Drug Administration, 2010.
|
[24] |
赵振心. TiNi合金血管支架的有限元分析及疲劳测试[D]. 上海: 上海交通大学, 2008.ZHAO Zhenxin. Finite element ansys and fatigue test for the TiNi vascular stent [D]. Shanghai: Shanghai Jiaotong University, 2008. (in Chinese)
|
[25] |
PELTON A, GONG X, DUERIG T. Fatigue testing of diamond shaped specimens [C]. Pacific Grove, CA(US): Shape Memory and Superelastic Technologies, 2003.
|
[26] |
成大先. 机械设计手册[M]. 第5版. 北京: 化学工业出版社, 2010.CHENG Daxian. Machine design manual [M]. 5th ed. Beijing: Chemical Industry Publishing House, 2010. (in Chinese)
|
[27] |
BROWN M W, MILLER K L. Atheory for fatigue under multiaxial stress-strain conditions [J]. Proceedings of the Institution of Mechanical Engineers, 1973, 187(1): 745 − 755. doi: 10.1243/PIME_PROC_1973_187_161_02
|
[28] |
PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws [J]. Journal of Basic Engineering, 1963, 85(4): 528 − 533. doi: 10.1115/1.3656900
|
[29] |
MARREY R V, BURGERMEISTER R, GRISHABER R B, et al. Fatigue and life prediction for cobalt-cobalt-chromium stents: A fracture mechanics analysis [J]. Biomaterials, 2006, 27(9): 1988 − 2000. doi: 10.1016/j.biomaterials.2005.10.012
|
[30] |
ROBERTSON S W, RITCHIE R O. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects [J]. Biomaterials, 2007, 28(4): 700 − 709.
|
[31] |
中国研究航空院. 应力强度因子手册[M]. 北京: 科学出版社, 1981.Chinese Aeronautical Establishment. Manusl of stress intensity factor [M]. Beijing: Science Press, 1993. (in Chinese)
|
[32] |
FROTSCHER M, NEUKING K, BÖCKMANN R, et al. In situ scanning electron microscopic study of structural fatigue of struts, the characteristic elementary building units of medical stents [J]. Materials Science and Engineering: A, 2008, 481: 160 − 165.
|