MACRO AND MICRO QUANTITATIVE STUDY ON IMPACT BEHAVIOR OF GLASS BEADSBY SHPB TESTS AND FEM-DEM COUPLING ANALYSIS
-
摘要: 为研究玻璃球的宏细观冲击特性,该文开展了不同相对密实度玻璃球的一维霍普金森杆(SHPB)冲击试验和离散元-有限差分法耦合数值模拟研究。结果表明:一维冲击荷载下玻璃球经历初始弹性、屈服、颗粒间互锁硬化和颗粒破碎硬化四个阶段。基于耦合数值模拟发现,颗粒平均配位数随着冲击荷载时程不断增加,但增加的速率逐渐下降,其原因是配位数变化取决于孔隙压缩和以旋转为主的颗粒重排,随着试样压缩变形的发展,孔隙压缩和颗粒重排需要克服更大的颗粒间互锁效应,因此逐渐变缓。而试样孔隙率在弹性阶段基本不变,在屈服阶段和互锁硬化阶段近似线性下降,其原因是孔隙率变化受控于颗粒整体移动,弹性阶段颗粒整体移动尚未发展,屈服之后颗粒整体移动产生的孔隙压缩随荷载时程呈线性发展。冲击荷载下,颗粒位移以整体移动为主,相对位移为辅,因此,颗粒位移对试样的初始密实度不敏感。颗粒旋转需要克服周围颗粒的互锁效应,互锁效应取决于试样级配和颗粒粒径,对密实度较敏感。
-
关键词:
- 冲击特性 /
- 玻璃球 /
- 霍普金森杆(SHPB)冲击试验 /
- 离散元-有限元耦合数值模拟 /
- 相对密实度 /
- 平均配位数
Abstract: In order to study the macro and micro impact behavior of glass beads, one-dimensional SHPB impact tests on glass balls with different relative densities were carried out. The coupled numerical model of SHPB impact test was established by discrete element and finite difference methods. The experimental and numerical results indicate that the glass ball experiences four specific phases under one-dimensional load, i.e., initial elastic response, yielding, lock-up and particle crushing. The average coordination of particles increases with the applied impact load but the increasing rate decreases gradually. This is because the coordination number is determined by both pore compression and particle redistribution which is caused by particle rotation and relative movement. Particle rotation and relative movement become more than more difficult with the compression of granular sample. The porosity of sample remains almost constant in initial elastic response, but decreases approximately linearly in the yielding and lock-up phases (grain redistribution). This is because the porosity is mainly determined by the bulk movement of particles, which causes compression in pores. The bulk movement of particles has not been developed at the initial loading, but after yielding the pore compression caused by the bulk movement of the particles develops linearly with the load history. The particle displacement is dominated by bulk movement; thus it is not sensitive to initial density. The particle rotation and relative movement need to overcome the lock-up effects which are closely related to the particle size distribution, thus they are very sensitive to the relative density. -
表 1 玻璃球试样参数特性
Table 1. Properties of glass ball
参数 土粒比重Gs 中值粒径D50/mm 不均匀系数Cu 曲率系数Cc 最大孔隙比emax 最小孔隙比emin 试验 2.47 1.71 2.38 1.05 0.7 0.497 数值 2.47 1.71 2.38 1.05 0.658 0.453 表 2 数值模型特性参数
Table 2. Mesoscopic parameters of numerical model
接触 参数 数值 颗粒间 法向刚度Kn/(N·m−1) 1.0×106 切向刚度Ks/(N·m−1) 4.0×105 摩擦系数μf 0.8 颗粒与墙体间 法向刚度Kn/(N·m−1) 1.0×107 切向刚度Ks/(N·m−1) 4.0×106 摩擦系数μf 0.8 接触阻尼 法向临界阻尼比ηn 0.5 切向临界阻尼比ηs 0.5 表 3 不同密实度试样对应的孔隙率和摩擦系数
Table 3. Porosity and friction coefficient of samples with different relative density
密实度/(%) 试样所需理论孔隙率 设定摩擦系数 实际生成试样孔隙率 30 0.374 0.40 0.376 60 0.349 0.16 0.356 90 0.322 0.03 0.328 表 4 SHPB数值试验模型参数
Table 4. Model parameters of SHPB numerical simulation
模型 参数 数值 压杆(zone) 弹性模量/GPa 72 泊松比 0.32 密度/(kg·m−3) 2700 颗粒 法向刚度Kn/(N·m−1) 4.0×106 切向刚度Ks/(N·m−1) 2.0×106 切向刚度μf 0.5 局部阻尼damp 0.5 墙体 法向刚度Kn/(N·m−1) 3.5×1010 切向刚度Ks/(N·m−1) 7.0×1010 摩擦系数μf 0.2 -
[1] 孙晓旺, 李永池, 叶中豹, 等. 新型空壳颗粒材料在人防工程中应用的实验研究[J]. 爆炸与冲击, 2017, 37(4): 643 − 648.SUN Xiaowang, LI Yongchi, YE Zhongbao, et al. Experimental study of a novel shelly cellular material used in civil defense engineering [J]. Explosion and Shock Waves, 2017, 37(4): 643 − 648. (in Chinese) [2] SU Y C, CHOI C E. Effects of particle shape on the cushioning mechanics of rock-filled gabions [J]. Acta Geotechnica, 2021, 16(4): 1043 − 4052. doi: 10.1007/s11440-020-01080-x [3] LYU Y R, NG C W W, WANG Y. Evaluation of wave dissipation in sand under impact loading [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 06019007. doi: 10.1061/(ASCE)GT.1943-5606.0002104 [4] 马悦, 朱志武, 马巍, 等. 冻土冲击动态应力-应变曲线特征及汇聚现象分析[J]. 工程力学, 2015, 32(10): 52 − 59. doi: 10.6052/j.issn.1000-4750.2014.03.0243MA Yue, ZHU Zhiwu, MA Wei, et al. Characteristics of stress-strain curves and convergence phenomenon of frozen soil under dynamic loading [J]. Engineering Mechanics, 2015, 32(10): 52 − 59. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.03.0243 [5] LIN Y, YAO W, JAFARI M, et al. Quantification of the dynamic compressive response of two Ottawa sands [J]. Experimental Mechanics, 2017, 57(9): 1371 − 1382. doi: 10.1007/s11340-017-0304-0 [6] 李潇, 方秦, 孔祥振, 等. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187 − 193. doi: 10.6052/j.issn.1000-4750.2017.03.0244LI Xiao, FANG Qin, KONG Xiangzhen, et al. SHPB test and numerical investigation on the inertia effect of mortar material [J]. Engineering Mechanics, 2018, 35(7): 187 − 193. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.03.0244 [7] LUO H, DU Y, HU Z, et al. High-strain rate compressive behavior of glass beads under confinement [J]. Experimental Mechanics, 2015, 55(5): 935 − 950. doi: 10.1007/s11340-015-9995-2 [8] LYU Y R, LIU J G, XIONG Z M. One-dimensional dynamic compressive behavior of dry calcareous sand at high strain rates [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1): 192 − 201. doi: 10.1016/j.jrmge.2018.04.013 [9] LYU Y R, LIU J G, ZUO D J. Moisture effects on the undrained dynamic behavior of calcareous sand at high strain rates [J]. Geotechnical Testing Journal, 2018, 42(3): 20170412. [10] LYU Y R, LI X, FAN C F, et al. Effects of internal pores on the mechanical properties of marine calcareous sand particles [J]. Acta Geotechnica, 2021, 16(10): 3209 − 3228. doi: 10.1007/s11440-021-01223-8 [11] 于潇, 陈力, 方秦. 一种量测松散介质对应力波衰减效应的实验方法及其在珊瑚砂中的应用[J]. 工程力学, 2019, 36(1): 44 − 52, 69. doi: 10.6052/j.issn.1000-4750.2017.11.0867YU Xiao, CHEN Li, FANG Qin. A testing method on the attenuation of stress waves in loose porous media and its application to coral sand [J]. Engineering Mechanics, 2019, 36(1): 44 − 52, 69. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0867 [12] 谢磊, 李庆华, 徐世烺. 冲击荷载下免蒸养活性粉末混凝土分形特征研究[J]. 工程力学, 2021, 38(3): 169 − 180. doi: 10.6052/j.issn.1000-4750.2020.05.0298XIE Lei, LI Qinghua, XU Shilang. Experimental study on fractal characteristics of steam free reactive powder concrete under impact load [J]. Engineering Mechanics, 2021, 38(3): 169 − 180. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0298 [13] SONG B, CHEN W N, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777 − 785. doi: 10.1016/j.mechmat.2009.01.003 [14] 郑文, 徐松林, 胡时胜. 侧限压缩下干燥砂的动态力学性能[J]. 爆炸与冲击, 2011, 31(6): 619 − 623.ZHENG Wen, XU Songlin, HU Shisheng. Dynamic mechanical properties of dry sand under confined compression [J]. Explosion and Shock Waves, 2011, 31(6): 619 − 623. (in Chinese) [15] 张艳萍, 陈育民, 王维国. 冲击荷载作用下干砂动力特性试验研究[J]. 地震工程学报, 2015, 37(增刊 2): 131 − 136.ZHANG Yanping, CHEN Yumin, WANG Weiguo. Test study on the dynamic behavior of dry sands subjected to impact loading [J]. China Earthquake Engineering Journal, 2015, 37(Suppl 2): 131 − 136. (in Chinese) [16] 魏久淇, 王明洋, 邱艳宇, 等. 钙质砂动态力学特性试验研究[J]. 振动与冲击, 2018, 37(24): 7 − 12. doi: 10.13465/j.cnki.jvs.2018.24.002WEI Jiuqi, WANG Mingyang, QIU Yanyu, et al. Impact compressive response of calcareous sand [J]. Journal of Vibration and Shock, 2018, 37(24): 7 − 12. (in Chinese) doi: 10.13465/j.cnki.jvs.2018.24.002 [17] NGUYEN H B K, RAHMAN M M, FOURIE A B. Characteristic behavior of drained and undrained triaxial compression tests: DEM study [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(9): 04018060. doi: 10.1061/(ASCE)GT.1943-5606.0001940 [18] 张斌, 柴寿喜, 魏厚振, 等. 珊瑚颗粒形状对钙质粗粒土的压缩性能影响[J]. 工程地质学报, 2020, 28(1): 85 − 93. doi: 10.13544/j.cnki.jeg.2019-016ZHANG Bin, CHAI Shouxi, WEI Houzhen, et al. Influence of coral sand particle shape on the compression property of coarse grained calcareous soil [J]. Journal of Engineering Geology, 2020, 28(1): 85 − 93. (in Chinese) doi: 10.13544/j.cnki.jeg.2019-016 [19] DELUZARCHE R, CAMBOU B, FRY J J. Modeling of rockfill behavior with crushable particles [M]// KONIETZKY H. Numerical Modeling in Micromechanics Via Particle Methods. London: Routledge, 2003: 219 − 224. [20] MINH N H, CHENG Y P. A DEM investigation of the effect of particle-size distribution on one-dimensional compression [J]. Géotechnique, 2013, 63(1): 44 − 53. [21] 黄青富, 詹美礼, 盛金昌, 等. 基于颗粒离散单元法的获取任意相对密实度下级配颗粒堆积体的数值方法[J]. 岩土工程学报, 2015, 37(3): 537 − 543. doi: 10.11779/CJGE201503019HUANG Qingfu, ZHAN Meili, SHENG Jinchang, et al. Numerical method to generate granular assembly with any desired relative density based on DEM [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537 − 543. (in Chinese) doi: 10.11779/CJGE201503019 [22] 王蕴嘉, 宋二祥. 堆石料颗粒形状对堆积密度及强度影响的离散元分析[J]. 岩土力学, 2019, 40(6): 2416 − 2426. doi: 10.16285/j.rsm.2018.0346WANG Yunjia, SONG Erxiang. Discrete element analysis of the particle shape effect on packing density and strength of rockfills [J]. Rock and Soil Mechanics, 2019, 40(6): 2416 − 2426. (in Chinese) doi: 10.16285/j.rsm.2018.0346 [23] 黄晚清, 陆阳. 散粒体重力堆积的三维离散元模拟[J]. 岩土工程学报, 2006, 28(12): 2139 − 2143. doi: 10.3321/j.issn:1000-4548.2006.12.017HUANG Wanqing, LU Yang. 3D DEM simulation of random packing of particulates under gravity [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2139 − 2143. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.12.017 [24] XU M, HONG J T, SONG E X. DEM study on the effect of particle breakage on the macro- and micro-behavior of rockfill sheared along different stress paths [J]. Computers and Geotechnics, 2017, 89: 113 − 127. doi: 10.1016/j.compgeo.2017.04.012 [25] 王璇, 徐明. 胶结型含可燃冰砂土剪切特性的离散元模拟[J]. 工程力学, 2021, 38(2): 44 − 51. doi: 10.6052/j.issn.1000-4750.2020.03.0174WANG Xuan, XU Ming. Discrete element simulation of the shear behavior of cemented methane hydrate-bearing sands [J]. Engineering Mechanics, 2021, 38(2): 44 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0174 [26] ZHOU W, MA G, CHANG X L, et al. Influence of particle shape on behavior of rockfill using a three-dimensional deformable DEM [J]. Journal of Engineering Mechanics, 2013, 139(12): 1868 − 1873. doi: 10.1061/(ASCE)EM.1943-7889.0000604 [27] 贾敏才, 陈纯, 吴邵海. 冲击荷载作用的离散-连续耦合数值模拟[J]. 水利学报, 2016, 47(8): 1079 − 1086. doi: 10.13243/j.cnki.slxb.20151115JIA Mincai, CHEN Chun, WU Shaohai. Discrete and continuous coupling numerical simulation of the impact loading [J]. Journal of Hydraulic Engineering, 2016, 47(8): 1079 − 1086. (in Chinese) doi: 10.13243/j.cnki.slxb.20151115 [28] PRABHU S, QIU T. Effect of particle size on high-strain rate response of sand [C]// Eighth International Conference on Case Histories in Geotechnical Engineering. Philadelphia: American Society of Civil Engineers, 2019: 155 − 164. [29] PRABHU S, QIU T. Modeling of sand particle crushing in split Hopkinson pressure bar tests using the discrete element method [J]. International Journal of Impact Engineering, 2021, 156: 103974. doi: 10.1016/j.ijimpeng.2021.103974 [30] 张涛, 蔚立元, 苏海健, 等. 基于FDM-DEM耦合的冲击损伤大理岩静态断裂力学特征研究[J]. 爆炸与冲击, 2022, 42(1): 013103.ZHANG Tao, YU Liyuan, SU Haijian, et al. Investigation on the static fracture mechanical characteristics of marble subjected to impact damage based on the FDM-DEM coupled simulation [J]. Explosion and Shock Waves, 2022, 42(1): 013103. (in Chinese) [31] GB/T 50123−2019, 土工试验方法标准[S]. 北京: 中国计划出版社, 2019.GB/T 50123−2019, Standard for geotechnical testing method [S]. Beijing: China Planning Press, 2019. (in Chinese) [32] DAVIES E D H, HUNTER S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 1963, 11(3): 155 − 179. doi: 10.1016/0022-5096(63)90050-4 [33] WU W, LI H B, ZHAO J. Dynamic responses of non-welded and welded rock fractures and implications for P-wave attenuation in a rock mass [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 174 − 181. doi: 10.1016/j.ijrmms.2015.03.035 [34] HARDIN B O. Crushing of soil particles [J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177 − 1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177) -