SEISMIC PERFORMANCE ANALYSIS AND LATERAL STIFFNESS OF INFILLED FRAME STRUCTURE
-
摘要: 结构初始刚度是工程抗震设计中的重要参数,在内嵌蒸压加气混凝土(ALC)板框架结构拟静力试验的基础上,基于试验现象,提出了一种填充墙体-框架结构相互作用模型并推导出结构初始刚度计算公式。建立5组28个有限元模型,研究梁柱线刚度比、墙体高宽比、嵌缝材料弹性模量、墙体弹性模量和厚度对填充墙体刚度贡献的影响。研究发现:填充墙体的刚度贡献主要受局部压缩的影响,其贡献程度与墙体-框架抗侧刚度之比呈负相关。基于此,通过拟合得到了墙体刚度折减系数aw关系式,通过与试验结果的对比,结果表明:该文提出的内嵌填充墙体框架初始刚度计算公式结果准确,可以为工程实践提供参考。Abstract: The initial stiffness of structures is an important parameter in engineering seismic design. Based on the quasi-static test of a frame structure which has embedded ALC slab, a mechanical model for infill frame structures is proposed and a formula for calculating the initial stiffness of structures is deduced according to the experimental phenomenon. In addition, five groups of 28 finite element models were established to study the effects of beam-to-column linear stiffness ratio, of the height-to-width ratio of the wall, of the elastic modulus of caulking material, of the elastic modulus and thickness of the wall on the stiffness contribution of filled wall. It is found that: the stiffness contribution of infilled wall is mainly affected by local compression, and its contribution is negatively correlated with the ratio of wall to frame lateral stiffness. On this basis, obtained through fitting was the relationship between the wall stiffness reduction coefficient aw and the wall to frame lateral stiffness ratio. The comparison between the calculated results and the experimental results shows that the calculation formula proposed for calculating the initial stiffness of the infilled frame is reliable; can be applied in practice engineering design.
-
表 1 不同墙体边界条件下试件刚度试算结果
Table 1. Test results of stiffness under different wall boundary conditions
参考文献 试件编号 试验结果K0/(kN/mm) 有限元结果 五等分K5/(kN/mm) K5/K0 七等分K7/(kN/mm) K7/K0 十等分K10/(kN/mm) K10/K0 李响[19] BFW1 23.6 23.7 1.004 24.9 1.055 26.1 1.106 黄群贤[27] AFKJ4 66.0 60.6 0.918 63.4 0.961 66.4 1.006 AFKJ5 68.5 67.3 0.982 68.7 1.003 70.7 1.032 林超[28] IF5 49.1 48.9 0.996 52.3 1.108 56.8 1.203 吕超[29] TK1 16.5 18.1 1.097 19.4 1.176 21.0 1.273 平均值 1.000 1.060 1.124 方差 0.064 0.085 0.113 表 2 参数设计及有限元计算结果
Table 2. Results of finite element analysis under different parameters
主要参数 梁柱线刚度比 嵌缝材料弹性模量Em/MPa 墙体弹性模量Ew/MPa 墙体高宽比 墙体厚度t/mm 框架抗侧刚度Kf/(kN/mm) 结构抗侧刚度Kfw/(kN/mm) 墙体刚度折减系数aw 梁柱线刚度比 0.2 3102 3102 1250/2000 120 21.9 50.7 0.195 0.5 3102 3102 1250/2000 120 29.3 59.9 0.206 0.8 3102 3102 1250/2000 120 33.3 65.2 0.215 1.0 3102 3102 1250/2000 120 35.1 67.6 0.219 2.0 3102 3102 1250/2000 120 39.8 74.1 0.231 3.0 3102 3102 1250/2000 120 41.8 77.1 0.238 4.0 3102 3102 1250/2000 120 43.0 78.8 0.241 5.0 3102 3102 1250/2000 120 43.7 79.9 0.244 嵌缝砂浆弹性模量 3 3 3102 1250/2000 120 41.8 47.0 − 3 30 3102 1250/2000 120 41.8 60.2 − 3 300 3102 1250/2000 120 41.8 74.0 − 3 1000 3102 1250/2000 120 41.8 77.1 − 3 6000 3102 1250/2000 120 41.8 81.7 − 3 10000 3102 1250/2000 120 41.8 83.7 − 3 15000 3102 1250/2000 120 41.8 85.6 − 墙体高宽比 3 3102 3102 1250/1250 120 42.4 59.2 0.270 3 3102 3102 1250/1500 120 42.2 64.7 0.252 3 3102 3102 1250/1750 120 42.0 70.9 0.244 3 3102 3102 1250/2250 120 41.7 82.5 0.228 3 3102 3102 1250/2500 120 41.5 86.9 0.216 墙体弹性模量 3 1500 1500 1250/2000 120 41.8 60.1 0.254 3 6000 6000 1250/2000 120 41.8 104.1 0.218 3 9000 9000 1250/2000 120 41.8 128.9 0.204 3 15000 15000 1250/2000 120 41.8 172.7 0.185 3 30000 30000 1250/2000 120 41.8 262.5 0.158 墙体厚度 3 3102 3102 1250/2000 60 41.8 61.8 0.269 3 3102 3102 1250/2000 90 41.8 69.8 0.252 3 3102 3102 1250/2000 150 41.8 83.8 0.227 表 3 理论计算结果与试验结果对比
Table 3. Comparison between theoretical calculation results and experimental results
参考文献 试件编号 梁柱线刚度比 嵌缝材料弹性模量Em/MPa 墙体弹性模量Ew/MPa 框架与墙体抗侧刚度之比i 墙体刚度折减系数aw 结构理论抗侧刚度$K_{{\rm{fw}}}' $/(kN/mm) 结构试验抗侧刚度Kfw/(kN/mm) 结构试验与理论抗侧刚度比$K_{{\rm{fw}}}' $/Kfw 卞文军等[15] QK 0.43 − 1750 0.131 0.209 12.7 12.0 1.06 李响[19] BFW1 0.78 − 1750 0.085 0.195 22.5 23.6 0.95 黄群贤[27] AFKJ5 0.37 − 3102 0.105 0.202 75.1 68.5 1.10 林超[28] IF5 0.48 − 2112 0.173 0.219 50.1 49.1 1.02 吕超[29] TK1 0.34 − 1750 0.118 0.206 18.7 16.5 1.13 曹正罡等[30] KJ-2 0.82 − 1750 0.346 0.244 18.8 18.2 1.03 周晓洁[31] RWF1 0.49 − 1020 0.308 0.240 58.3 55.0 1.06 王宇轩[32] KK 0.91 8000 32 500 0.087 0.196 139.8 134.4 1.04 孙嘉[33] KJ2一层 0.73 − 1612 0.358 0.247 44.2 48.5 0.91 KJ2二层 0.71 − 1612 0.358 0.247 42.4 41.1 1.03 平均值 1.03 方差 0.05 -
[1] 田海, 陈以一. ALC拼合墙板受剪性能试验研究和有限元分析[J]. 建筑结构学报, 2009, 30(2): 85 − 91.TIAN Hai, CHEN Yiyi. Experimental research and finite element analysis on lateral shearing behavior of ALC spliced-connection wallboard [J]. Journal of Building Structures, 2009, 30(2): 85 − 91. (in Chinese) [2] 邓明科, 马向琨, 张伟, 等. 高延性混凝土加固蒸压加气混凝土砌体墙抗震性能试验研究[J]. 工程力学, 2021, 38(7): 9 − 18. doi: 10.6052/j.issn.1000-4750.2020.06.0336DENG Mingke, MA Xiangkun, ZHANG Wei, et al. Experimental studies on aseismic behavior of autoclaved aerated concrete masonry walls strengthened with HDC [J]. Engineering Mechanics, 2021, 38(7): 9 − 18. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0336 [3] ZADE N P, BHOSALE A, SARKAR P, et al. In-Plane seismic response of autoclaved aerated concrete block masonry-infilled reinforced concrete frame building [J]. ACI Structural Journal, 2022, 119(2): 45 − 60. [4] 李国强, 方明霁, 刘宜靖, 等. 钢结构住宅体系加气混凝土外墙板抗震性能试验研究[J]. 土木工程学报, 2005, 38(10): 27 − 31, 38.LI Guoqiang, FANG Mingji, LIU Yijing, et al. An experimental study on the seismic behavior of ALC external wall panels in steel frames [J]. China Civil Engineering Journal, 2005, 38(10): 27 − 31, 38. (in Chinese) [5] 李国强, 赵欣, 孙飞飞, 等. 钢结构住宅体系墙板及墙板节点足尺模型振动台试验研究[J]. 地震工程与工程振动, 2003, 23(1): 64 − 70.LI Guoqiang, ZHAO Xin, SUN Feifei, et al. Shaking table study on a full scale model of wall panels and their connections of steel frame residential building systems [J]. Earthquake Engineering and Engineering Vibration, 2003, 23(1): 64 − 70. (in Chinese) [6] 张爱林, 马林, 刘学春, 等. 装配式外挂墙板钢框架受力性能有限元分析[J]. 建筑结构学报, 2016, 37(增刊 1): 152 − 157.ZHANG Ailin, MA Lin, LIU Xuechun, et al. Finite element analysis on mechanical performance of steel frame structure with prefabricated external wall panel [J]. Journal of Building Structures, 2016, 37(Suppl 1): 152 − 157. (in Chinese) [7] 李晓东, 康永康, 宋子阳, 等. 纤维石膏基复合墙板轻钢框架抗震性能分析[J]. 哈尔滨工程大学学报, 2020, 41(12): 1797 − 1803.LI Xiaodong, KANG Yongkang, SONG Ziyang, et al. Seismic behavior of lightweight steel frame with fiber gypsum-based composite wallboard [J]. Journal of Harbin Engineering University, 2020, 41(12): 1797 − 1803. (in Chinese) [8] 杨伟, 侯爽, 欧进萍. 从汶川地震分析填充墙对结构整体抗震能力影响[J]. 大连理工大学学报, 2009, 49(5): 770 − 775.YANG Wei, HOU Shuang, OU Jinping. Analysis of influence of structural global seismic capacity induced by infills subjected to Wenchuan earthquake [J]. Journal of Dalian University of Technology, 2009, 49(5): 770 − 775. (in Chinese) [9] 胡精武, 徐锋, 杜东升, 等. 整体钢框架内嵌加气混凝土填充墙板足尺模型振动台试验研究[J]. 建筑结构学报, 2018, 39(6): 141 − 148. doi: 10.14006/j.jzjgxb.2018.06.015HU Jingwu, XU Feng, DU Dongsheng, et al. Experimental study on shaking table test of full-scale steel frame with embedded autoclaved lightweight concrete wall panels [J]. Journal of Building Structures, 2018, 39(6): 141 − 148. (in Chinese) doi: 10.14006/j.jzjgxb.2018.06.015 [10] 王波, 王静峰, 完海鹰, 等. 循环荷载作用下高层钢结构建筑填充墙体性能与连接构造研究[J]. 建筑钢结构进展, 2015, 17(6): 44 − 50.WANG Bo, WANG Jingfeng, WAN Haiying, et al. Study on performance and connection detail of filled walls in high-rise steel structures under cyclic loadings [J]. Progress in Steel Building Structures, 2015, 17(6): 44 − 50. (in Chinese) [11] 王波, 王静峰, 李响, 等. 填充ALC墙板钢管混凝土框架抗震试验与数值模拟[J]. 土木工程学报, 2014, 47(增刊 2): 56 − 61.WANG Bo, WANG Jingfeng, LI Xiang, et al. Experiments and analysis of CFST frames with ALC walls under seismic action [J]. China Civil Engineering Journal, 2014, 47(Suppl 2): 56 − 61. (in Chinese) [12] 刘华, 卢清刚, 苗启松, 等. 蒸压轻质加气混凝土外墙板高效连接节点性能研究[J]. 建筑结构, 2019, 49(18): 32 − 38.LIU Hua, LU Qinggang, MIAO Qisong, et al. Research on performance of effective connection for autoclaved aerated concrete exterior wallboard system [J]. Building Structure, 2019, 49(18): 32 − 38. (in Chinese) [13] 李锋, 姬淑艳, 姜宝龙, 等. 外挂ALC墙板-钢框架及连接节点受力性能研究[J]. 湖南大学学报(自然科学版), 2022, 49(3): 133 − 144.LI Feng, JI Shuyan, JIANG Baolong, et al. Study on mechanical behavior of steel frame with ALC wall panels and its connections [J]. Journal of Hu’nan University (Natural Sciences), 2022, 49(3): 133 − 144. (in Chinese) [14] 陈伟, 陶忠, 杨雨, 等. 不同方式连接下钢柱-一体式预制混凝土墙组合构件抗震性能试验研究[J]. 建筑结构学报, 2020, 41(11): 89 − 98. doi: 10.14006/j.jzjgxb.2019.0372CHEN Wei, TAO Zhong, YANG Yu, et al. Experimental study on seismic performance of composite structure of steel column-integrated prefabricated concrete wall with different connection types [J]. Journal of Building Structures, 2020, 41(11): 89 − 98. (in Chinese) doi: 10.14006/j.jzjgxb.2019.0372 [15] 卞文军, 范力, 李升旗. 不同连接方式预制复合墙板填充墙对框架抗震性能的影响[J]. 建筑结构学报, 2020, 41(增刊 1): 196 − 203.BIAN Wenjun, FAN Li, LI Shengqi. Influence of prefabricated composite infilled wallboard with different connection modes on seismic behavior of frame structure [J]. Journal of Building Structures, 2020, 41(Suppl 1): 196 − 203. (in Chinese) [16] 曹万林, 刘子斌, 刘岩, 等. 装配式轻型钢管混凝土框架-复合墙共同工作性能试验研究[J]. 建筑结构学报, 2019, 40(8): 12 − 22.CAO Wanlin, LIU Zibin, LIU Yan, et al. Experimental study on combining effect of assembled lightweight CFST frames with composite walls [J]. Journal of Building Structures, 2019, 40(8): 12 − 22. (in Chinese) [17] CUI J H, HE S L, DIN K W, et al. Cyclic behavior of autoclaved aerated concrete external panel with new connector [J]. Materials, 2022, 15(24): 8778. doi: 10.3390/ma15248778 [18] 何之舟, 潘鹏, 王海深. 夹心保温墙体GFRP连接件轴向性能研究[J]. 工程力学, 2021, 38(3): 112 − 121. doi: 10.6052/j.issn.1000-4750.2020.05.0279HE Zhizhou, PAN Peng, WANG Haishen. Axial performances of a GFRP connector for sandwich insulation wall panels [J]. Engineering Mechanics, 2021, 38(3): 112 − 121. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0279 [19] 李响. 节能轻质墙体与钢管混凝土框架的协同抗震及失效机理[D]. 合肥: 合肥工业大学, 2014.LI Xiang. Collaborative earthquake and failure mechanisms of CFST frames with energy-saving light wall [D]. Hefei: Hefei University of Technology, 2014. (in Chinese) [20] 曹万林, 庞国新, 李云霄, 等. 轻质填充墙异型柱框架弹性阶段地震作用计算[J]. 地震工程与工程振动, 1997(3): 45 − 52.CAO Wanlin, PANG Guoxin, LI Yunxiao, et al. Calculation of earthquake action on frame with special-shaped columns and light-weight filled walls at elastic stage [J]. Earthquake Engineering and Engineering Vibration, 1997(3): 45 − 52. (in Chinese) [21] 关国雄, 夏敬谦. 钢筋混凝土框架砖填充墙结构抗震性能的研究[J]. 地震工程与工程振动, 1996, 16(1): 87 − 99. doi: 10.13197/j.eeev.1996.01.009GUAN Guoxiong, XIA Jingqian. Study on seismic behavior of brick masonry infilled reinforced concrete frame structures [J]. Earthquake Engineering and Engineering Vibration, 1996, 16(1): 87 − 99. (in Chinese) doi: 10.13197/j.eeev.1996.01.009 [22] FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings [S]. Washington: Federal Emergency Management Agency, 2000. [23] EL-DAKHAKHNI W W, ELGAALY M, HAMID A A. Three-strut model for concrete masonry-infilled steel frames [J]. Journal of Structural Engineering, 2003, 129(2): 177 − 185. doi: 10.1061/(ASCE)0733-9445(2003)129:2(177) [24] 张艳敏, 姚谦峰. 水平地震作用下填充墙框架结构的刚度计算[J]. 山西建筑, 2004, 30(1): 9 − 10. doi: 10.3969/j.issn.1009-6825.2004.01.006ZHANG Yanmin, YAO Qianfeng. Rigidity calculation of frame-wall structure filled with masonry under horizontal earthquake [J]. Shanxi Architecture, 2004, 30(1): 9 − 10. (in Chinese) doi: 10.3969/j.issn.1009-6825.2004.01.006 [25] TIMOSHENKO S P, GOODIER J N. 弹性理论[M]. 徐芝纶译. 3版. 北京: 高等教育出版社, 2013: 328 − 344.TIMOSHENKO S P, GOODIER J N. Theory of elasticity [M]. Translated by XU Zhilun. 3rd ed. Beijing: Higher Education Press, 2013: 328 − 344. (in Chinese) [26] 马尤苏夫, 崔聪, 周清汉, 等. 联肢加劲钢板剪力墙滞回性能试验研究与数值分析[J]. 工程力学, 2021, 38(9): 212 − 227. doi: 10.6052/j.issn.1000-4750.2020.11.0795MA Yousufu, CUI Cong, ZHOU Qinghan, et al. Experimental study and numerical analysis on hysteresis behavior of coupled steel plate shear walls with stiffeners [J]. Engineering Mechanics, 2021, 38(9): 212 − 227. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0795 [27] 黄群贤. 新型砌体填充墙框架结构抗震性能与弹塑性地震反应分析方法研究[D]. 泉州: 华侨大学, 2011.HUANG Qunxian. Study on seismic behavior and elastic-plastic analysis method for seismic responses of RC frame infilled with new masonry [D]. Quanzhou: Huaqiao University, 2011. (in Chinese) [28] 林超. 新型砌体填充墙框架抗震性能与共同作用机理研究[D]. 泉州: 华侨大学, 2019.LIN Chao. Seismic performance and interaction mechanism of infilled RC frames using new masonry blocks [D]. Quanzhou: Huaqiao University, 2019. (in Chinese) [29] 吕超. 轻质条板填充墙RC框架结构抗震性能研究[D]. 徐州: 中国矿业大学, 2018.LYU Chao. Study on seismic behaviors of lightweight wallboard-infilled RC frames [D]. Xuzhou: China University of Mining and Technology, 2018. (in Chinese) [30] 曹正罡, 杜鹏, 房明, 等. 轻质填充墙装配式钢框架抗震性能试验研究[J]. 建筑结构学报, 2015, 36(8): 9 − 15. doi: 10.14006/j.jzjgxb.2015.08.002CAO Zhenggang, DU Peng, FANG Ming, et al. Experimental research on seismic performance of fabricated frames with lightweight infill walls [J]. Journal of Building Structures, 2015, 36(8): 9 − 15. (in Chinese) doi: 10.14006/j.jzjgxb.2015.08.002 [31] 周晓洁. 柔性连接新型砌体填充墙框架结构抗震性能研究[D]. 天津: 天津大学, 2014.ZHOU Xiaojie. Study on seismic behavior of flexible connection frame structure infilled with new masonry [D]. Tianjin: Tianjin University, 2014. (in Chinese) [32] 王宇轩. 新型泡沫混凝土灌芯墙板填充墙框架抗震性能研究[D]. 天津: 天津大学, 2018.WANG Yuxuan. Anti-seismic performance research of new type foam concrete core wallboard and infilled wall frame [D]. Tianjin: Tianjin University, 2018. (in Chinese) [33] 孙嘉. 内嵌ALC墙板部分包裹混凝土异形柱全装配式框架抗震性能试验研究[D]. 合肥: 合肥工业大学, 2022.SUN Jia. Seismic performance test of fully assembled partially encased concrete special-shaped column frames with ALC wall panel [D]. Hefei: Hefei University of Technology, 2022. (in Chinese) -