杨绿峰, 陈致. 钢筋混凝土拱承载力分析的齐次广义屈服函数[J]. 工程力学, 2023, 40(4): 71-79. DOI: 10.6052/j.issn.1000-4750.2021.09.0734
引用本文: 杨绿峰, 陈致. 钢筋混凝土拱承载力分析的齐次广义屈服函数[J]. 工程力学, 2023, 40(4): 71-79. DOI: 10.6052/j.issn.1000-4750.2021.09.0734
YANG Lu-feng, CHEN Zhi. HOMOGENEOUS GENERALIZED YIELD FUNCTION FOR BEARING CAPACITY ANALYSIS OF REINFORCED CONCRETE ARCH[J]. Engineering Mechanics, 2023, 40(4): 71-79. DOI: 10.6052/j.issn.1000-4750.2021.09.0734
Citation: YANG Lu-feng, CHEN Zhi. HOMOGENEOUS GENERALIZED YIELD FUNCTION FOR BEARING CAPACITY ANALYSIS OF REINFORCED CONCRETE ARCH[J]. Engineering Mechanics, 2023, 40(4): 71-79. DOI: 10.6052/j.issn.1000-4750.2021.09.0734

钢筋混凝土拱承载力分析的齐次广义屈服函数

HOMOGENEOUS GENERALIZED YIELD FUNCTION FOR BEARING CAPACITY ANALYSIS OF REINFORCED CONCRETE ARCH

  • 摘要: 为了解决弹性模量调整法应用于钢筋混凝土(RC)结构的难题,建立了矩形截面RC偏压构件的通用齐次广义屈服函数。充分考虑RC偏压构件的破坏机理,并利用二次函数建立了矩形截面RC构件的分段光滑压弯承载力相关方程。通过回归分析建立分区表达的截面特征函数,以综合考虑钢筋混凝土偏压构件的截面几何和材料性能对承载力的影响,在此基础上采用分数指数幂的一阶多项式建立矩形截面RC偏压构件的齐次广义屈服函数。利用单元承载比定义高承载单元的自适应识别准则,通过有策略地缩减高承载单元的弹性模量模拟RC拱结构高应力区域的刚度退化,并根据线弹性迭代分析确定RC拱的极限承载力,据此提出了RC结构承载力分析的弹性模量缩减法。通过与模型试验及增量非线性有限元法对比分析,验证了该文方法具有较高的计算精度与计算效率。

     

    Abstract: In order to overcome the difficulty of elastic modulus adjustment procedures applied in reinforced concrete (RC) structures, a homogeneous generalized yield function is developed for RC eccentric compression member with rectangular section. The piecewise-smooth interaction equation of bearing capacity is developed for RC eccentric compression members with rectangular section using the quadratic function and their failure mechanism is considered. The partition expressions of sectional characteristic function are proposed through regression analysis to consider the influence of the sectional geometry and material property on the bearing capacity, hence the homogeneous generalized yield function is developed for these members by adopting the first order polynomials with fractional exponential power. Furthermore, an adaptive criterion for identification of highly stressed element is defined by using the element bearing ratio. The elastic modulus of the highly-stressed element is reduced strategically so that the ultimate bearing capacity of RC arches is evaluated by linear elastic iteration. Compared with the model test and the incremental non-linear finite element method, the proposed method proves to have high computational accuracy and efficiency.

     

/

返回文章
返回