EXPERIMENTAL RESEARCH AND THEORETICAL ANALYSIS OF POLYGON-KEY ASSEMBLY CONNECTION
-
摘要: 为了提高装配式RC剪力墙结构中装配式拼缝的受剪性能,提出新型键槽装配式拼缝。开展键槽装配式拼缝的受剪性能试验研究,研究不同的键槽倾角、键槽高度和轴压比对其承载力和刚度的影响,进而揭示其失效破坏模式。在此基础上,对键槽装配式拼缝的受力性能进行理论分析,推导其相应的承载力计算理论公式,并利用试验结果对理论分析结果的有效性进行验证。研究结果表明,键槽的设置能够有效提高装配式拼缝的抗剪承载力,与平行装配式拼缝相比,键槽装配式拼缝的峰值荷载提高百分比大于15%。当键槽倾角在45° ~ 90°范围内时,键槽可以有效提高键槽装配式拼缝的峰值荷载,且设置不同键槽倾角的键槽装配式拼缝的峰值荷载相差不多。随着键槽高度的增大,键槽装配式拼缝的开裂荷载和峰值荷载均略有提高,当键槽高度在5 cm ~ 7 cm范围内时,键槽装配式拼缝的峰值荷载相差不多。随着轴压比的增加,键槽装配式拼缝的峰值荷载逐渐增加。基于剪切-摩擦理论建立的键槽装配式拼缝峰值荷载的计算公式,理论公式计算值和试验值吻合较好。Abstract: To improve the shear performance of assembly connections in precast RC shear wall structures, a novel polygon-key assembly connection (PKA connection) is proposed. Pseudo-static tests are carried out to study the shear performance of the PKA connections. Specimens’ parameters considered in the tests consist of polygon-key inclination angles, polygon-key heights and axial compression ratios. Shear capacity, stiffness, and failure mode of the PKA connections are investigated. Furthermore, theoretical analyses of the PKA connections are performed, equations for calculation of PKA connections’ shear capacity are deduced, and the theoretical analysis results are validated by the test results. The results show that the polygon-keys can effectively improve shear capacity of the PKA connections. Compared with parallel assembly connections, peak loads of the PKA connections are enhanced by more than 15%. When polygon-key inclination angles are within the range of 45° ~ 90°, peak loads of the PKA connections change slightly. When polygon-key heights are within the range of 5 cm ~ 7 cm, cracking loads and peak loads of the PKA connections change slightly. With an increase in the axial compression ratio, peak loads of the PKA connections gradually increase. Based on the shear-friction theory, calculated peak loads of the PKA connections are in good agreement with the test results.
-
表 1 试件的构造参数
Table 1. Parameters of specimens
编号 类型 键槽倾角
α/(°)键槽高度
h/mm轴压比 S1 平行装配式拼缝 0 0 0.1 S2 键槽装配式拼缝 45 50 0.1 S3 键槽装配式拼缝 60 50 0.1 S4 键槽装配式拼缝 90 50 0.1 S5 键槽装配式拼缝 60 30 0.1 S6 键槽装配式拼缝 60 70 0.1 S7 键槽装配式拼缝 60 50 0.2 S8 键槽装配式拼缝 60 50 0.3 表 2 钢筋的力学性能
Table 2. Mechanical properties of rebars
型号 屈服强度
fy/MPa极限强度 fu/MPa 弹性模量
E/(×105 Pa)伸长率
δ/(%)ψ8 352 429 2.01 18 ψ12 361 456 2.01 20 表 3 试件破坏特征参数
Table 3. Characteristic parameters of specimens’ failure mode
试件编号 剩余键槽高度
a/mm键槽破坏角度
θ/(°)S1 − − S2 15.2 40 S3 14.8 44 S4 14.9 45 S5 − − S6 15.5 44 S7 15.2 40 S8 15.0 39 表 4 试件特征点参数值
Table 4. Parameters of characteristic points
编号 开裂位移
Δcr/mm开裂荷载
Fcr/kN峰值位移
Δp/mm峰值荷载
Fp/kNS1 0.18 60.12 2.54 72.70 S2 0.23 60.87 2.34 83.36 S3 0.27 61.28 2.62 84.18 S4 0.30 61.34 2.97 84.70 S5 0.25 60.91 2.59 79.56 S6 0.14 62.62 2.02 85.52 S7 0.21 111.82 1.60 136.83 S8 0.31 156.75 1.27 179.59 表 5 抗剪承载力计算值和试验值对比
Table 5. Comparison of bearing capacity between calculated and test results
试件 计算值/kN 试验值/kN 计算值/试验值 S1 77.21 72.70 1.06 S2 88.55 84.70 1.05 S3 86.30 84.18 1.03 S4 85.92 83.36 1.03 S5 77.21 79.56 0.97 S6 90.13 85.52 1.05 S7 129.99 136.83 0.95 S8 172.60 179.59 0.96 -
[1] WANG W, WANG X. Experimental and numerical investigations on concentrated-hollow RC shear walls [J]. Engineering Structures, 2021, 242: 112570. doi: 10.1016/j.engstruct.2021.112570 [2] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139 − 148. doi: 10.6052/j.issn.1000-4750.2018.01.0048ZHU Zhangfeng, GUO Zhengxing. A seismic experimental research on I-shape precast concrete shear walls with vertical and horizontal joints [J]. Engineering Mechanics, 2019, 36(3): 139 − 148. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0048 [3] LIU Q, JIANG H. Experimental study on a new type of earthquake resilient shear wall [J]. Earthquake Engineering & Structural Dynamics, 2017, 46(14): 2479 − 2497. [4] SHEN S D, PAN P, MIAO Q S, et al. Test and analysis of reinforced concrete (RC) precast shear wall assembled using steel shear key (SSK) [J]. Earthquake Engineering & Structural Dynamics, 2019, 48(14): 1595 − 1612. [5] WANG W, LI A Q, WANG X X. Seismic performance of precast concrete shear wall structure with improved assembly horizontal wall connections [J]. Bulletin of Earthquake Engineering, 2018, 16(9): 4133 − 4158. [6] GU Q, DONG G, WANG X, et al. Research on pseudo-static cyclic tests of precast concrete shear walls with vertical rebar lapping in grout-filled constrained hole [J]. Engineering Structures, 2019, 189: 396 − 410. doi: 10.1016/j.engstruct.2019.03.069 [7] 刘良林, 肖建庄, 丁陶. 套筒灌浆连接受力失效机理与有限元仿真验证[J]. 工程力学, 2022, 39(12): 177 − 189. doi: 10.6052/j.issn.1000-4750.2021.07.0560LIU Lianglin, XIAO Jianzhuang, DING Tao. Finite element simulation verification and failure mechanism of grouted sleeve connections under loading [J]. Engineering Mechanics, 2022, 39(12): 177 − 189. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0560 [8] SOUDKI K A, WEST J S, RIZKALLA S H, et al. Horizontal connections for precast concrete shear wall panels under cyclic shear loading [J]. PCI Journal, 1996, 41(3): 64 − 80. doi: 10.15554/pcij.05011996.64.80 [9] PENG Y Y, QIAN J R, WANG Y H. Cyclic performance of precast concrete shear walls with a mortar–sleeve connection for longitudinal steel bars [J]. Materials and Structures, 2016, 49(6): 2455 − 2469. doi: 10.1617/s11527-015-0660-0 [10] 张锡治, 马健, 韩鹏, 等. 装配式剪力墙齿槽式连接受剪性能研究[J]. 建筑结构学报, 2017, 38(11): 93 − 100, 121.ZHANG Xizhi, MA Jian, HAN Peng, et al. Shear behavior on prefabricated shear wall alveolar type connection [J]. Journal of Building Structures, 2017, 38(11): 93 − 100, 121. (in Chinese) [11] 黄远, 杨扬, 许铭, 等. 插筋灌浆连接水平拼缝受剪性能试验研究与有限元分析[J]. 建筑结构学报, 2016, 37(3): 103 − 109.HUANG Yuan, YANG Yang, XU Ming, et al. Experimental study and finite element analysis on shear performance of horizontal grouted rebar connections [J]. Journal of Building Structures, 2016, 37(3): 103 − 109. (in Chinese) [12] 张文莹, 杨联萍, 余少乐, 等. 双面叠合剪力墙关键问题研究: 水平连接节点抗震性能试验[J]. 土木工程学报, 2018, 51(12): 28 − 41.ZHANG Wenying, YANG Lianping, YU Shaole, et al. Research on key issues of the double-superimposed shear wall: experimental study on seismic performance of horizontal connections [J]. China Civil Engineering Journal, 2018, 51(12): 28 − 41. (in Chinese) -