MECHANICAL RESPONSE OF SIMPLY SUPPORTED REINFORCED CONCRETE SLABS UNDER FIRE
-
摘要: 拉力膜理论针对的是板大变形下开裂状态的研究,对于火灾下板发生大变形尚未开裂的机理缺乏合理的解释。为此该文采用合理的材料热工性能和热-力耦合本构关系,应用ABAQUS有限元软件对火灾下钢筋混凝土简支单向板和双向板的温度场和热力耦合场进行了三维实体有限元分析,在实验验证的基础上深入探讨火灾下混凝土和钢筋的应力变化规律以及钢筋混凝土简支板的力学响应机理。分析结果表明:简支板发生了激烈的应力重分布现象,其变形过程经历弹性、弹塑性、塑性以及受拉开裂四个阶段,在弹塑性和塑性阶段板底混凝土双向受压的倒拱效应使得双向板抗火性能优秀; 当火灾下钢筋混凝土简支板实验没有达到力学响应的受拉开裂阶段时,板底直接受火区域不会出现开裂现象;与单向板相比,双向板进入塑性与受拉开裂阶段的时间大幅度延长,且塑性与受拉开裂阶段变形速率减缓,因此其抗火性能更优。Abstract: The tensile membrane theory for the cracking state of reinforced concrete (RC) slabs does not explain the mechanism that enables the slabs to bear the load under a large deformation before the cracking at slab bottom. Therefore, three-dimensional solid finite element (FE) models of simply supported one-way RC slabs and two-way RC slabs in both heat transfer analysis and thermo-mechanical coupling analysis were established using the ABAQUS software, based on reasonable thermal parameters and thermo-mechanical coupling constitutive of materials. Using the verified model, the stress variation law of concrete and steel bars and the mechanical response of simply supported RC slabs under fire were further investigated. The results show that: simply supported RC slabs undergo intense stress redistribution, and their responses show four stages, namely elastic, elastic-plastic, plastic and, tensile cracking stages. In elastic-plastic and plastic stages, the bidirectional compression of bottom concrete, namely inverted arch effect, makes the fire resistance of two-way RC slab excellent; there is no cracking in the fire area of the slabs until the tensile cracking stage; Compared with one-way RC slabs, the time for two-way RC slabs to enter the plastic and tensile cracking stage is postponed, and the deformation rate in the plastic and tensile cracking stage is also slowed down. Therefore, the two-way RC slabs have better fire resistance.
-
表 1 实验试件各参数
Table 1. Properties of specimens.
学者 试件编号 长度L×宽度B×
板厚h/mm钢筋屈服强度
fy /MPa混凝立方体抗压
强度fcu/MPa保护层厚度
c/mm钢筋直径
d/mm钢筋间距
s/mm板自重g+外荷载q/
(kN/m2)受火面积/
mm2支撑方式 陈礼刚[2] B2 4300×3300×120 338 38.33 20 10 150 5.0 3050×1500 对边简支 B3 4300×3300×120 338 38.33 15 10 100 5.0 3050×1500 对边简支 B4 4300×3300×120 338 38.33 20 10 100 5.0 3050×1500 对边简支 LIM等[3] A1 4300×3300×100 468 36.70 25 12 200 5.5 4000×3000 四边简支 杨志年[4] A2 6660×5000×120 422 32.30 15 8 200/180 5 5400×3800 四边简支 WANG等[5] A3 3300×3300×100 414 28.00 15 8 200 4.5 2400×2400 四边简支 WANG等 [6] A4 3900×3300×100 485 34.00 15 8 200 4.5 3000×2400 四边简支 表 2 不同判别标准下简支板耐火极限
Table 2. Fire resistance of simply supported slabs under different criteria.
板类别 耐火极限 /min T593 T140 L/20 δv 单向板 105 89 51 − 双向板 103 89 53 − -
[1] KUDRYASHOV V, KIEN, N T, LUPANDIN A. Fire resistance evaluation of reinforced concrete structures [J]. Safety of Technogenic Environment, 2012, 3(5): 45 − 49. [2] 陈礼刚. 钢筋混凝土板受火性能的试验研究 [D]. 西安: 西安建筑科技大学, 2004: 28 − 62.CHEN Ligang. The experimental research of reinforced concrete slab [D]. Xian: Xi’an University of Architecture and Technology, 2004: 28 − 62. (in Chinese) [3] LIM L, WADE C. Experimental fire tests of two-way concrete slabs [R]. Fire Engineering Research Report 02/12, University of Canterbury, Christchurch, 2002: 30 − 35. [4] 杨志年. 不同边界约束条件的混凝土双向板抗火性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 18 − 28.YANG Zhinian, Research on fire resistance of two-way reinforced concrete slabs with different edge restraints [D]. Harbin: Harbin Institute of Technology, 2013: 18 − 28. (in Chinese) [5] WANG Y, YUAN G, HUANG Z, et al. Experimental study on the fire behaviour of reinforced concrete slabs under combined uni-axial in-plane and out-of-plane loads [J]. Engineering Structures, 2016, 128: 316 − 332. doi: 10.1016/j.engstruct.2016.09.054 [6] WANG Y, BISBY L A, WANG T Y, et al. Fire behaviour of reinforced concrete slabs under combined biaxial in-plane and out-of-plane loads [J]. Fire Safety Journal, 2018, 96: 27 − 45. doi: 10.1016/j.firesaf.2017.12.004 [7] WEERASINGHE P, NGUYEN K, MENDIS P, et al. Large-scale experiment on the behaviour of concrete flat slabs subjected to standard fire [J]. Journal of Building Engineering, 2020, 30: 101255. [8] BAILEY C G, TOH W S. Small-scale concrete slab tests at ambient and elevated temperatures [J]. Engineering Structures, 2007, 29(10): 2775 − 2791. doi: 10.1016/j.engstruct.2007.01.023 [9] DONG Y L, FANG Y Y. Determination of tensile membrane effects by segment equilibrium [J]. Magazine of Concrete Research, 2010, 62(1): 17 − 23. doi: 10.1680/macr.2008.62.1.17 [10] 张大山, 董毓利, 房圆圆. 考虑受拉薄膜效应的板块平衡法修正及在混凝土双向板中的应用[J]. 工程力学, 2017, 34(3): 204 − 210, 240. doi: 10.6052/j.issn.1000-4750.2015.08.0664ZHANG Dashan, DONG Yuli, FANG Yuanyuan. Modification of segment equilibrium method through considering tensile membrane effects and its application in two-way concrete slabs [J]. Engineering Mechanics, 2017, 34(3): 204 − 210, 240. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.08.0664 [11] LI G Q, GUO S X, ZHOU H S. Modeling of membrane action in floor slabs subjected to fire [J]. Engineering Structures, 2007, 29(6): 880 − 887. doi: 10.1016/j.engstruct.2006.06.025 [12] 张娜思, 李国强. 火灾下组合楼板薄膜效应分析的改进方法[J]. 土木工程学报, 2009, 42(3): 29 − 35. doi: 10.3321/j.issn:1000-131X.2009.03.005ZHANG Nasi, LI Guoqiang. An innovative analytical method for the membrane action of composite floor slabs in fire [J]. China Civil Engineering Journal, 2009, 42(3): 29 − 35. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.03.005 [13] ABU A K, BURGESS I W, PLANK R J. Tensile Membrane Action of Thin Slabs Exposed to Thermal Gradients [J]. Journal of Engineering Mechanics, 2013, 139(11): 1497 − 1507. doi: 10.1061/(ASCE)EM.1943-7889.0000597 [14] BURGESS I, SAHIN M. Tensile Membrane Action of Lightly-reinforced Rectangular Composite Slabs in Fire [J]. Structures, 2018, 16: 176 − 197. [15] 王勇, 王功臣, 王本淼, 等. 火灾后混凝土连续板剩余承载力试验研究及理论分析[J]. 工程力学, 2022, 39(2): 96 − 109. doi: 10.6052/j.issn.1000-4750.2020.12.0914WANG Yong, WANG Gongchen, WANG Benmiao, et al. Experimental study and theoretical analysis on the residual bearing capacity of fire-damaged concrete continuous slabs [J]. Engineering Mechanics, 2022, 39(2): 96 − 109. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0914 [16] 王勇, 马帅, 张亚军, 等. 火灾蔓延作用下混凝土连续板力学行为试验研究与模拟[J]. 工程力学, 2020, 37(3): 202 − 216. doi: 10.6052/j.issn.1000-4750.2019.04.0238WANG Yong, MA Shuai, ZHANG Yajun, et al. Experimental study and numerical analysisof concrete continuous slabs subjected to traveling fire [J]. Engineering Mechanics, 2020, 37(3): 202 − 216. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0238 [17] 王勇, 郭文轩, 李凌志, 等. 足尺钢框架结构中楼板火灾行为数值分析[J]. 工程力学, 2021, 38(7): 133 − 146. doi: 10.6052/j.issn.1000-4750.2020.07.0489WANG Yong, GUO Wenxuan, LI Lingzhi, et al. Numerical analysis of fire behavior of concrete slab in full-scale steel-frame structure. [J]. Engineering Mechanics, 2021, 38(7): 133 − 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0489 [18] KODUR V K R, BHATT P P. A numerical approach for modeling response of fiber reinforced polymer strengthened concrete slabs exposed to fire [J]. Composite Structures, 2018, 187: 226 − 240. doi: 10.1016/j.compstruct.2017.12.051 [19] XU Q, CHEN L, LI X, et al. Comparative experimental study of fire resistance of two-way restrained and unrestrained precast concrete composite slabs [J]. Fire Safety Journal, 2020, 118: 103225. doi: 10.1016/j.firesaf.2020.103225 [20] WANG Y, WANG G, HUANG Z, et al. Numerical modelling of in-plane restrained concrete two-way slabs subjected to fire [J]. Fire Safety Journal, 2021, 121: 103307. doi: 10.1016/j.firesaf.2021.103307 [21] SUTRISO W, WAHYUNI E. Simplification of Numerical Model to Analyze the Uniformly Heated one Way Reinforced Concrete Slabs Exposed by Fire [J]. International Journal of Engineering and Innovative Technology, 2014, 4(6): 197 − 201. [22] AL-ROUSAN R. Optimum endurance time of reinforced concrete one way slab subjected to fire [J]. Procedia Manufacturing, 2020, 44: 520 − 527. doi: 10.1016/j.promfg.2020.02.260 [23] LIM L, BUCHANAN A, MOSS P, et al. Numerical modelling of two-way reinforced concrete slabs in fire [J]. Engineering Structures, 2004, 26(8): 1081 − 1091. doi: 10.1016/j.engstruct.2004.03.009 [24] HUANG Z H, BURGESS I W, PLANK R J. Modeling Membrane Action of Concrete Slabs in Composite Buildings in Fire. I: Theoretical Development [J]. Journal of Structural Engineering, 2003, 129(8): 1093 − 1102. doi: 10.1061/(ASCE)0733-9445(2003)129:8(1093) [25] HUANG Z H, BURGESS I W, PLANK R J. Modeling membrane action of concrete slabs in composite buildings in fire. II: Validations. [J]. Journal of Structural Engineering, 2003, 129(8): 1103 − 1112. doi: 10.1061/(ASCE)0733-9445(2003)129:8(1103) [26] JIANG J, LI G Q. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures [J]. Fire Safety Journal, 2017, 96: 59 − 73. [27] HAWILEH R A, KODUR V. Performance of reinforced concrete slabs under hydrocarbon fire exposure [J]. Tunnelling and Underground Space Technology, 2018, 77: 177 − 187. doi: 10.1016/j.tust.2018.03.024 [28] WANG Y, DONG Y L, ZHOU G C. Nonlinear numerical modeling of two-way reinforced concrete slabs subjected to fire [J]. Computers & Structures, 2013, 119(4): 23 − 36. [29] DING F X, LI Z, CHENG S S, et al. Stress redistribution of simply supported reinforced concrete beams under fire conditions [J]. Journal of Central South University, 2018, 25(9): 2093 − 2106. doi: 10.1007/s11771-018-3899-0 [30] British Standards Institution. Eurocode 2: Design of concrete structures: Part 1.2: structural fire design: BS, EN1992-1-2 [S]. London: British Standards Institution, 2004. [31] LIE T T, CHABOT M. A Method To Predict the Fire Resistance of Circular Concrete Filled Hollow Steel Columns [J]. Journal of Fire Protection Engineering, 1990, 2(4): 111 − 126. doi: 10.1177/104239159000200402 [32] 李引擎, 马道贞, 徐坚. 建筑结构防火设计计算和构造原理[M]. 北京: 中国建筑工业出版社, 1991: 10 − 35.LI Yinqing, MA Daozhen , XU Jian. Fire design calculation and construction principle of building structure [M]. Beijing: China Architecture & Building Press, 1991: 10 − 35. (in Chinese) [33] ELLOBODY E, BAILEY C G. Modelling of unbonded post-tensioned concrete slabs under fire conditions [J]. Fire Safety Journal, 2009, 44(2): 159 − 167. doi: 10.1016/j.firesaf.2008.05.007 [34] DING F X, YU Z W. Behavior of concrete and concrete-filled circular steel tubular stub columns at constant high temperatures [J]. Journal of Central South University, 2006, 13(6): 726 − 732. doi: 10.1007/s11771-006-0022-8 [35] 过镇海, 时旭东. 钢筋混凝土的高温性能及其计算[M]. 北京: 清华大学出版社, 2003.GUO Zhenhai, SHI Xudong. High temperature performance and calculation of reinforced concrete [M]. Beijing: Tsinghua University Press, 2003. (in Chinese) [36] 孙金香, 高伟, 译. 建筑物综合防火设计[M]. 天津: 天津科技翻译出版有限公司, 1994: 704 − 705.SUN Jinxiang, GAO Wei. Synthetic fire prevention design of building [M]. Tianjin: Tianjin Science & Technology, 1994: 704 − 705. (in Chinese) [37] GA/T 714−2007, 构件用防火保护材料快速升温耐火试验方法[S]. 北京: 中国标准出版社, 2007.GA/T 714−2007, Rapid rise fire test methods of fire protection materials for structural elements [S]. Beijing: China Standards Press, 2007. (in Chinese) [38] ASTM E119-18, Standard test methods for fire tests of building construction and materials [S]. West Conshohocken: ASTM International, 2018. [39] GB 50016−2014, 建筑设计防火规范[S]. 北京: 中国标准出版社, 2018.GB 50016−2014, Code for fire protection design of buildings [S]. Beijing: China Standards Press, 2018. (in Chinese) -