留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火灾下钢筋混凝土简支板力学响应机理

丁发兴 王文君 蒋彬辉 余志武

丁发兴, 王文君, 蒋彬辉, 余志武. 火灾下钢筋混凝土简支板力学响应机理[J]. 工程力学, 2023, 40(2): 222-231. doi: 10.6052/j.issn.1000-4750.2021.08.0664
引用本文: 丁发兴, 王文君, 蒋彬辉, 余志武. 火灾下钢筋混凝土简支板力学响应机理[J]. 工程力学, 2023, 40(2): 222-231. doi: 10.6052/j.issn.1000-4750.2021.08.0664
DING Fa-xing, WANG Wen-jun, JIANG Bin-hui, YU Zhi-wu. MECHANICAL RESPONSE OF SIMPLY SUPPORTED REINFORCED CONCRETE SLABS UNDER FIRE[J]. Engineering Mechanics, 2023, 40(2): 222-231. doi: 10.6052/j.issn.1000-4750.2021.08.0664
Citation: DING Fa-xing, WANG Wen-jun, JIANG Bin-hui, YU Zhi-wu. MECHANICAL RESPONSE OF SIMPLY SUPPORTED REINFORCED CONCRETE SLABS UNDER FIRE[J]. Engineering Mechanics, 2023, 40(2): 222-231. doi: 10.6052/j.issn.1000-4750.2021.08.0664

火灾下钢筋混凝土简支板力学响应机理

doi: 10.6052/j.issn.1000-4750.2021.08.0664
基金项目: 国家自然科学基金面上项目(51978664);湖南省自然科学杰出青年基金项目(2019JJ20029);中南大学中央高校基本科研业务费专项资金项目(2021zzts0218 )
详细信息
    作者简介:

    丁发兴(1979−),男,浙江温州人,教授,博士,从事钢-混凝土组合结构抗火与抗震研究(E-mail: dinfaxin@csu.edu.cn)

    王文君(1994−),女,湖南岳阳人,博士生,从事钢-混凝土组合结构抗火研究(E-mail: wenjunwang@csu.edu.cn)

    余志武(1955−),男,湖南岳阳人,教授,博士,从事钢-混凝土组合结构抗火与抗震研究(E-mail: zhwyu@csu.edu.cn)

    通讯作者:

    蒋彬辉(1987−),男,湖南娄底人,副教授,博士,从事钢结构抗火与结构抗连续性倒塌研究(E-mail: binhuijiang@csu.edu.cn)

  • 中图分类号: TU352.5

MECHANICAL RESPONSE OF SIMPLY SUPPORTED REINFORCED CONCRETE SLABS UNDER FIRE

  • 摘要: 拉力膜理论针对的是板大变形下开裂状态的研究,对于火灾下板发生大变形尚未开裂的机理缺乏合理的解释。为此该文采用合理的材料热工性能和热-力耦合本构关系,应用ABAQUS有限元软件对火灾下钢筋混凝土简支单向板和双向板的温度场和热力耦合场进行了三维实体有限元分析,在实验验证的基础上深入探讨火灾下混凝土和钢筋的应力变化规律以及钢筋混凝土简支板的力学响应机理。分析结果表明:简支板发生了激烈的应力重分布现象,其变形过程经历弹性、弹塑性、塑性以及受拉开裂四个阶段,在弹塑性和塑性阶段板底混凝土双向受压的倒拱效应使得双向板抗火性能优秀; 当火灾下钢筋混凝土简支板实验没有达到力学响应的受拉开裂阶段时,板底直接受火区域不会出现开裂现象;与单向板相比,双向板进入塑性与受拉开裂阶段的时间大幅度延长,且塑性与受拉开裂阶段变形速率减缓,因此其抗火性能更优。
  • 图  1  钢筋混凝土简支板有限元模型

    Figure  1.  FE model for simply supported RC slabs

    图  2  单向板实测温度与计算温度对比图

    Figure  2.  Comparison of temperature-time curves between test results and analysis results of one-way slab

    图  3  双向板实测温度与计算温度对比图

    Figure  3.  Comparison of temperature-time curves between test results and analysis results of two-way slabs

    图  4  单向板跨中实测挠度与计算挠度对比图

    Figure  4.  Comparisons of deflection-temperature curves of slabs between test results and analysis results of one-way slabs

    图  5  双向板跨中实测挠度与计算挠度对比图

    Figure  5.  Comparisons of deflection-time curves between test results and analysis results of two-way slabs

    图  6  单向板B4和双向板A2应力分布图

    Figure  6.  Diagram of stress distribution of one-way slab B4 and two-way slab A2

    图  7  单向板B4和双向板A2典型截面混凝土应力分布

    Figure  7.  Concrete stress variation of one-way slab B4 and two-way slab A2 in typical sections

    图  8  实验板裂缝图

    Figure  8.  Diagram of crack of slabs in the experiment

    图  9  简支板高温力学响应图

    Figure  9.  Mechanical response of simply-supported slabs under high temperature

    10  不同时刻单向板跨中截面混凝土应力分布

    10.  Stress distribution of concrete of one-way slab in mid-span section at different moment

    11  不同时刻双向板跨中截面混凝土应力分布

    11.  Stress distribution of concrete of two-way slab in mid-span section at different moment

    表  1  实验试件各参数

    Table  1.   Properties of specimens.

    学者试件编号长度L×宽度B×
    板厚h/mm
    钢筋屈服强度
    fy /MPa
    混凝立方体抗压
    强度fcu/MPa
    保护层厚度
    c/mm
    钢筋直径
    d/mm
    钢筋间距
    s/mm
    板自重g+外荷载q/
    (kN/m2)
    受火面积/
    mm2
    支撑方式
    陈礼刚[2]B24300×3300×12033838.3320101505.03050×1500对边简支
    B34300×3300×12033838.3315101005.03050×1500对边简支
    B44300×3300×12033838.3320101005.03050×1500对边简支
    LIM等[3]A14300×3300×10046836.7025122005.54000×3000四边简支
    杨志年[4]A26660×5000×12042232.30158200/18055400×3800四边简支
    WANG等[5]A33300×3300×10041428.001582004.52400×2400四边简支
    WANG等 [6]A43900×3300×10048534.001582004.53000×2400四边简支
    下载: 导出CSV

    表  2  不同判别标准下简支板耐火极限

    Table  2.   Fire resistance of simply supported slabs under different criteria.

    板类别耐火极限 /min
    T593T140L/20δv
    单向板1058951
    双向板1038953
    下载: 导出CSV
  • [1] KUDRYASHOV V, KIEN, N T, LUPANDIN A. Fire resistance evaluation of reinforced concrete structures [J]. Safety of Technogenic Environment, 2012, 3(5): 45 − 49.
    [2] 陈礼刚. 钢筋混凝土板受火性能的试验研究 [D]. 西安: 西安建筑科技大学, 2004: 28 − 62.

    CHEN Ligang. The experimental research of reinforced concrete slab [D]. Xian: Xi’an University of Architecture and Technology, 2004: 28 − 62. (in Chinese)
    [3] LIM L, WADE C. Experimental fire tests of two-way concrete slabs [R]. Fire Engineering Research Report 02/12, University of Canterbury, Christchurch, 2002: 30 − 35.
    [4] 杨志年. 不同边界约束条件的混凝土双向板抗火性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 18 − 28.

    YANG Zhinian, Research on fire resistance of two-way reinforced concrete slabs with different edge restraints [D]. Harbin: Harbin Institute of Technology, 2013: 18 − 28. (in Chinese)
    [5] WANG Y, YUAN G, HUANG Z, et al. Experimental study on the fire behaviour of reinforced concrete slabs under combined uni-axial in-plane and out-of-plane loads [J]. Engineering Structures, 2016, 128: 316 − 332. doi: 10.1016/j.engstruct.2016.09.054
    [6] WANG Y, BISBY L A, WANG T Y, et al. Fire behaviour of reinforced concrete slabs under combined biaxial in-plane and out-of-plane loads [J]. Fire Safety Journal, 2018, 96: 27 − 45. doi: 10.1016/j.firesaf.2017.12.004
    [7] WEERASINGHE P, NGUYEN K, MENDIS P, et al. Large-scale experiment on the behaviour of concrete flat slabs subjected to standard fire [J]. Journal of Building Engineering, 2020, 30: 101255.
    [8] BAILEY C G, TOH W S. Small-scale concrete slab tests at ambient and elevated temperatures [J]. Engineering Structures, 2007, 29(10): 2775 − 2791. doi: 10.1016/j.engstruct.2007.01.023
    [9] DONG Y L, FANG Y Y. Determination of tensile membrane effects by segment equilibrium [J]. Magazine of Concrete Research, 2010, 62(1): 17 − 23. doi: 10.1680/macr.2008.62.1.17
    [10] 张大山, 董毓利, 房圆圆. 考虑受拉薄膜效应的板块平衡法修正及在混凝土双向板中的应用[J]. 工程力学, 2017, 34(3): 204 − 210, 240. doi: 10.6052/j.issn.1000-4750.2015.08.0664

    ZHANG Dashan, DONG Yuli, FANG Yuanyuan. Modification of segment equilibrium method through considering tensile membrane effects and its application in two-way concrete slabs [J]. Engineering Mechanics, 2017, 34(3): 204 − 210, 240. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.08.0664
    [11] LI G Q, GUO S X, ZHOU H S. Modeling of membrane action in floor slabs subjected to fire [J]. Engineering Structures, 2007, 29(6): 880 − 887. doi: 10.1016/j.engstruct.2006.06.025
    [12] 张娜思, 李国强. 火灾下组合楼板薄膜效应分析的改进方法[J]. 土木工程学报, 2009, 42(3): 29 − 35. doi: 10.3321/j.issn:1000-131X.2009.03.005

    ZHANG Nasi, LI Guoqiang. An innovative analytical method for the membrane action of composite floor slabs in fire [J]. China Civil Engineering Journal, 2009, 42(3): 29 − 35. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.03.005
    [13] ABU A K, BURGESS I W, PLANK R J. Tensile Membrane Action of Thin Slabs Exposed to Thermal Gradients [J]. Journal of Engineering Mechanics, 2013, 139(11): 1497 − 1507. doi: 10.1061/(ASCE)EM.1943-7889.0000597
    [14] BURGESS I, SAHIN M. Tensile Membrane Action of Lightly-reinforced Rectangular Composite Slabs in Fire [J]. Structures, 2018, 16: 176 − 197.
    [15] 王勇, 王功臣, 王本淼, 等. 火灾后混凝土连续板剩余承载力试验研究及理论分析[J]. 工程力学, 2022, 39(2): 96 − 109. doi: 10.6052/j.issn.1000-4750.2020.12.0914

    WANG Yong, WANG Gongchen, WANG Benmiao, et al. Experimental study and theoretical analysis on the residual bearing capacity of fire-damaged concrete continuous slabs [J]. Engineering Mechanics, 2022, 39(2): 96 − 109. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0914
    [16] 王勇, 马帅, 张亚军, 等. 火灾蔓延作用下混凝土连续板力学行为试验研究与模拟[J]. 工程力学, 2020, 37(3): 202 − 216. doi: 10.6052/j.issn.1000-4750.2019.04.0238

    WANG Yong, MA Shuai, ZHANG Yajun, et al. Experimental study and numerical analysisof concrete continuous slabs subjected to traveling fire [J]. Engineering Mechanics, 2020, 37(3): 202 − 216. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0238
    [17] 王勇, 郭文轩, 李凌志, 等. 足尺钢框架结构中楼板火灾行为数值分析[J]. 工程力学, 2021, 38(7): 133 − 146. doi: 10.6052/j.issn.1000-4750.2020.07.0489

    WANG Yong, GUO Wenxuan, LI Lingzhi, et al. Numerical analysis of fire behavior of concrete slab in full-scale steel-frame structure. [J]. Engineering Mechanics, 2021, 38(7): 133 − 146. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0489
    [18] KODUR V K R, BHATT P P. A numerical approach for modeling response of fiber reinforced polymer strengthened concrete slabs exposed to fire [J]. Composite Structures, 2018, 187: 226 − 240. doi: 10.1016/j.compstruct.2017.12.051
    [19] XU Q, CHEN L, LI X, et al. Comparative experimental study of fire resistance of two-way restrained and unrestrained precast concrete composite slabs [J]. Fire Safety Journal, 2020, 118: 103225. doi: 10.1016/j.firesaf.2020.103225
    [20] WANG Y, WANG G, HUANG Z, et al. Numerical modelling of in-plane restrained concrete two-way slabs subjected to fire [J]. Fire Safety Journal, 2021, 121: 103307. doi: 10.1016/j.firesaf.2021.103307
    [21] SUTRISO W, WAHYUNI E. Simplification of Numerical Model to Analyze the Uniformly Heated one Way Reinforced Concrete Slabs Exposed by Fire [J]. International Journal of Engineering and Innovative Technology, 2014, 4(6): 197 − 201.
    [22] AL-ROUSAN R. Optimum endurance time of reinforced concrete one way slab subjected to fire [J]. Procedia Manufacturing, 2020, 44: 520 − 527. doi: 10.1016/j.promfg.2020.02.260
    [23] LIM L, BUCHANAN A, MOSS P, et al. Numerical modelling of two-way reinforced concrete slabs in fire [J]. Engineering Structures, 2004, 26(8): 1081 − 1091. doi: 10.1016/j.engstruct.2004.03.009
    [24] HUANG Z H, BURGESS I W, PLANK R J. Modeling Membrane Action of Concrete Slabs in Composite Buildings in Fire. I: Theoretical Development [J]. Journal of Structural Engineering, 2003, 129(8): 1093 − 1102. doi: 10.1061/(ASCE)0733-9445(2003)129:8(1093)
    [25] HUANG Z H, BURGESS I W, PLANK R J. Modeling membrane action of concrete slabs in composite buildings in fire. II: Validations. [J]. Journal of Structural Engineering, 2003, 129(8): 1103 − 1112. doi: 10.1061/(ASCE)0733-9445(2003)129:8(1103)
    [26] JIANG J, LI G Q. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures [J]. Fire Safety Journal, 2017, 96: 59 − 73.
    [27] HAWILEH R A, KODUR V. Performance of reinforced concrete slabs under hydrocarbon fire exposure [J]. Tunnelling and Underground Space Technology, 2018, 77: 177 − 187. doi: 10.1016/j.tust.2018.03.024
    [28] WANG Y, DONG Y L, ZHOU G C. Nonlinear numerical modeling of two-way reinforced concrete slabs subjected to fire [J]. Computers & Structures, 2013, 119(4): 23 − 36.
    [29] DING F X, LI Z, CHENG S S, et al. Stress redistribution of simply supported reinforced concrete beams under fire conditions [J]. Journal of Central South University, 2018, 25(9): 2093 − 2106. doi: 10.1007/s11771-018-3899-0
    [30] British Standards Institution. Eurocode 2: Design of concrete structures: Part 1.2: structural fire design: BS, EN1992-1-2 [S]. London: British Standards Institution, 2004.
    [31] LIE T T, CHABOT M. A Method To Predict the Fire Resistance of Circular Concrete Filled Hollow Steel Columns [J]. Journal of Fire Protection Engineering, 1990, 2(4): 111 − 126. doi: 10.1177/104239159000200402
    [32] 李引擎, 马道贞, 徐坚. 建筑结构防火设计计算和构造原理[M]. 北京: 中国建筑工业出版社, 1991: 10 − 35.

    LI Yinqing, MA Daozhen , XU Jian. Fire design calculation and construction principle of building structure [M]. Beijing: China Architecture & Building Press, 1991: 10 − 35. (in Chinese)
    [33] ELLOBODY E, BAILEY C G. Modelling of unbonded post-tensioned concrete slabs under fire conditions [J]. Fire Safety Journal, 2009, 44(2): 159 − 167. doi: 10.1016/j.firesaf.2008.05.007
    [34] DING F X, YU Z W. Behavior of concrete and concrete-filled circular steel tubular stub columns at constant high temperatures [J]. Journal of Central South University, 2006, 13(6): 726 − 732. doi: 10.1007/s11771-006-0022-8
    [35] 过镇海, 时旭东. 钢筋混凝土的高温性能及其计算[M]. 北京: 清华大学出版社, 2003.

    GUO Zhenhai, SHI Xudong. High temperature performance and calculation of reinforced concrete [M]. Beijing: Tsinghua University Press, 2003. (in Chinese)
    [36] 孙金香, 高伟, 译. 建筑物综合防火设计[M]. 天津: 天津科技翻译出版有限公司, 1994: 704 − 705.

    SUN Jinxiang, GAO Wei. Synthetic fire prevention design of building [M]. Tianjin: Tianjin Science & Technology, 1994: 704 − 705. (in Chinese)
    [37] GA/T 714−2007, 构件用防火保护材料快速升温耐火试验方法[S]. 北京: 中国标准出版社, 2007.

    GA/T 714−2007, Rapid rise fire test methods of fire protection materials for structural elements [S]. Beijing: China Standards Press, 2007. (in Chinese)
    [38] ASTM E119-18, Standard test methods for fire tests of building construction and materials [S]. West Conshohocken: ASTM International, 2018.
    [39] GB 50016−2014, 建筑设计防火规范[S]. 北京: 中国标准出版社, 2018.

    GB 50016−2014, Code for fire protection design of buildings [S]. Beijing: China Standards Press, 2018. (in Chinese)
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  180
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 录用日期:  2021-12-14
  • 修回日期:  2021-12-08
  • 网络出版日期:  2021-12-14
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回