留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大跨度钢箱桁组合连续梁桥涡振性能研究

周涛 邓宇 陈晓虎 王文熙 周明星 华旭刚 陈政清

周涛, 邓宇, 陈晓虎, 王文熙, 周明星, 华旭刚, 陈政清. 大跨度钢箱桁组合连续梁桥涡振性能研究[J]. 工程力学, 2023, 40(2): 213-221. doi: 10.6052/j.issn.1000-4750.2021.08.0661
引用本文: 周涛, 邓宇, 陈晓虎, 王文熙, 周明星, 华旭刚, 陈政清. 大跨度钢箱桁组合连续梁桥涡振性能研究[J]. 工程力学, 2023, 40(2): 213-221. doi: 10.6052/j.issn.1000-4750.2021.08.0661
ZHOU Tao, DENG Yu, CHEN Xiao-hu, WANG Wen-xi, ZHOU Ming-xing, HUA Xu-gang, CHEN Zheng-qing. VORTEX-INDUCED VIBRATIONS OF LONG-SPAN CONTINUOUS BRIDGES WITH STEEL TRUSS-STIFFENED BOX-GIRDER[J]. Engineering Mechanics, 2023, 40(2): 213-221. doi: 10.6052/j.issn.1000-4750.2021.08.0661
Citation: ZHOU Tao, DENG Yu, CHEN Xiao-hu, WANG Wen-xi, ZHOU Ming-xing, HUA Xu-gang, CHEN Zheng-qing. VORTEX-INDUCED VIBRATIONS OF LONG-SPAN CONTINUOUS BRIDGES WITH STEEL TRUSS-STIFFENED BOX-GIRDER[J]. Engineering Mechanics, 2023, 40(2): 213-221. doi: 10.6052/j.issn.1000-4750.2021.08.0661

大跨度钢箱桁组合连续梁桥涡振性能研究

doi: 10.6052/j.issn.1000-4750.2021.08.0661
基金项目: 国家自然科学基金项目(51908210,52025082);湖南省自然科学基金项目(2020JJ5074);中国铁建股份有限公司科研计划课题项目(2020-B01);中国工程院战略咨询重点项目(2021-XZ-37)
详细信息
    作者简介:

    周 涛(1980−),男,河北人,高工,博士生,主要从事桥梁规划、设计及建设管理等研究(E-mail: zhoutao.job@qq.com)

    邓 宇(1980−),男,广西人,正高工,硕士,主要从事桥梁设计与研究(E-mail: dengyu@tylin.com.cn)

    陈晓虎(1974−),男,江苏人,正高工,博士,主要从事桥梁设计与研究(E-mail: chenxiaohu@tylin.com.cn)

    王文熙(1988−),男,湖南人,助理教授,博士,主要从事桥梁风致振动与控制研究(E-mail: wxwang@hnu.edu.cn)

    周明星(1966−),男,湖北人,正高工,硕士,主要从事特大型桥梁施工技术与管理研究(E-mail: 13602143636@139.com)

    陈政清(1947−),男,浙江人,教授,博士,主要从事非线性分析、结构振动及控制研究(E-mail: zqchen@hnu.edu.cn)

    通讯作者:

    华旭刚(1978−),男,浙江人,教授,博士,主要从事桥梁人致、风致振动与控制研究(E-mail: cexghua@hnu.edu.cn)

  • 中图分类号: TU311.3

VORTEX-INDUCED VIBRATIONS OF LONG-SPAN CONTINUOUS BRIDGES WITH STEEL TRUSS-STIFFENED BOX-GIRDER

  • 摘要: 主梁的大幅涡振一直是困扰跨海连续梁桥的主要病害之一,但对箱桁组合断面主梁的涡振研究较少。拟建的澳氹第四跨海大桥为一座变截面非对称钢箱桁组合连续梁桥,主梁宽度近50 m,且桥面附属结构呈非对称分布,气动外形极为复杂。该文采用1∶70缩尺比的跨中主梁断面节段模型风洞试验研究了澳氹四桥的涡振性能,对比分析了风攻角、紊流度、桥梁阻尼比、附属结构气动外形等因素对主梁断面涡振性能的影响。并通过将外侧栏杆、电缆箱、供水管、风障及防撞栏杆等桥面附属结构拆解,探讨了主梁涡振的原因。进一步比较了中跨跨中(L/2)及三分之一跨(L/3)两种不同断面的涡振性能差异。研究表明:宽幅钢箱桁组合梁断面容易在负攻角下发生大幅涡振,且不同位置两种断面涡振性能差异显著,高耸桁架的遮挡效应对该类桥梁涡脱特性影响较大;非对称横断面形式对涡振性能影响较大,减小外侧栏杆透风率以及采用布置位置合理的下扰流板可有效减小涡振幅值。基于风洞试验数据识别了涡振尾流振子模型的气动参数,准确重现了涡振幅值-风速关系曲线。
  • 图  1  某跨海三跨变截面非对称连续桥立面图 /cm

    Figure  1.  Elevation of a continuous sea-crossing bridge with variable and asymmetric cross-section

    图  2  主桥横断面布置图 /cm

    Figure  2.  Cross-section of the bridge

    图  3  第一阶竖弯与扭转模态振型图

    Figure  3.  Fundamental modal shape of bending and torsional vibrations

    图  4  模型细部与风洞试验现场

    Figure  4.  Details of sectional model and experimental setup

    图  5  桥梁扭转位移随风速变化(东侧来流,L/2断面)

    Figure  5.  Relation between torsional response and wind speed (wind coming from east side, L/2 cross-section)

    图  6  桥梁扭转位移随风速变化(西侧来流,L/2断面)

    Figure  6.  Relation between torsional response and wind speed (wind coming from west side, L/2 cross-section)

    图  7  桥梁扭转位移随风速变化(东侧来流,L/3断面)

    Figure  7.  Relation between torsional response and wind speed (wind coming from east side, L/3 cross-section)

    图  8  桥梁扭转位移随风速变化(西侧来流,L/3断面)

    Figure  8.  Relation between torsional response and wind speed (wind coming from west side, L/3 cross-section)

    图  9  −3°攻角下桥梁扭转响应与风速间关系(西侧来流,L/3断面)

    Figure  9.  Relation between bridge torsional response and wind speed under wind attack angle of −3° (wind coming from west side, L/3 cross-section)

    图  10  3%紊流度下桥梁扭转响应与风速间关系(西侧来流,L/3断面)

    Figure  10.  Relation between bridge torsional response and wind speed under turbulence intensity of 3% (wind coming from west side, L/3 cross-section)

    图  11  不同阻尼比下涡振扭转响应与风速间关系(西侧来流,L/3断面)

    Figure  11.  Relation between bridge torsional response and wind speed under different damping ratios (wind coming from west side, L/3 cross-section)

    图  12  封闭外侧栏杆的气动措施及其涡振测试结果

    Figure  12.  Relation between vortex-induced response and barrier permeability

    图  13  封闭外侧栏杆的气动措施及其涡振测试结果

    Figure  13.  Relation between vortex-induced response and installation location ratio

    图  14  采用优化后断面涡振性能

    Figure  14.  Vortex-induced vibration performance after installing aerodynamic measures

    图  15  扭转涡振响应尾流振子模型仿真结果与试验对比(L/3断面)

    Figure  15.  Comparison of experiment and simulation results of torsional vortex-induced vibrations (L/3 cross-section)

    表  1  涡振性能风洞试验节段模型设计参数

    Table  1.   Design parameters of section model for vortex-induced vibrations performance wind tunnel test

    参数名称实桥值缩尺模型值
    主梁长度/m147.01/702.10
    主梁宽度/m48.41/700.69
    主梁高度/m3.01/700.043
    等效质量/(t/m)43.41/70213.998
    等效质量矩/(t·m2/m)6772.31/7040.191
    对称竖弯基频/Hz0.3512.3∶14.4
    对称扭转基频/Hz0.9011.9∶110.5
    竖弯阻尼比0.4~0.610.40
    扭转阻尼比0.4~0.610.45
    下载: 导出CSV

    表  2  涡振成因分析工况信息表

    Table  2.   Working condition information for cause analysis of vortex-induced vibrations

    工况名工况信息
    工况1去除西侧外侧栏杆
    工况2去除西侧外侧栏杆+供水管
    工况3去除西侧外侧栏杆+供水管+电缆箱
    工况4去除西侧外侧栏杆+供水管+电缆箱+风障及防撞栏杆
    工况5西侧桥面采用与东侧相同的附属结构布置
    下载: 导出CSV

    表  3  涡振尾流振子模型参数

    Table  3.   Parameters of wake oscillation model

    失速参数γ升力系数幅值CL0速度耦合参数A范德珀尔参数ε
    1.0232.420.3070.025
    下载: 导出CSV
  • [1] 陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005.

    CHEN Zhengqing. Wind engineering on bridges [M]. Beijing: China Communications Press, 2005. (in Chinese)
    [2] BATTISTA R C, PFEIL M S. Reduction of vortex-induced oscillations of Rio–Niterói bridge by dynamic control devices [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84: 273 − 288. doi: 10.1016/S0167-6105(99)00108-7
    [3] FUJINO Y, YOSHIDA Y. Wind-induced vibration and control of Trans-Tokyo bay crossing bridge [J]. Journal of Structural Engineering, 2002, 128(8): 1012 − 1025. doi: 10.1061/(ASCE)0733-9445(2002)128:8(1012)
    [4] ZHAO L, CUI W, SHEN X M, et al. A fast on-site measure-analyze-suppress response to control vortex-induced-vibration of a long-span bridge [J]. Structures, 2022, 35: 192 − 201. doi: 10.1016/j.istruc.2021.10.017
    [5] 林阳, 封周权, 华旭刚, 等. 基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法[J]. 工程力学, 2020, 37(2): 192 − 200. doi: 10.6052/j.issn.1000-4750.2019.03.0143

    LIN Yang, FENG Zhouquan, HUA Xugang, et al. Artificial bee colony algorithm for flutter derivatives identification of bridge decks using free vibration records [J]. Engineering Mechanics, 2020, 37(2): 192 − 200. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0143
    [6] HE X, LI H, WANG H, et al. Effects of geometrical parameters on the aerodynamic characteristics of a streamlined flat box girder [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 170: 56 − 67. doi: 10.1016/j.jweia.2017.08.009
    [7] 何旭辉, 张兵, 邹云峰, 等. 芜湖长江公铁大桥主桥抗风性能试验研究[J]. 桥梁建设, 2019, 49(2): 24 − 29. doi: 10.3969/j.issn.1003-4722.2019.02.005

    HE Xuhui, ZHANG Bing, ZOU Yunfeng, et al. Experimental research on wind-resistant performance of main bridge of Wuhu Changjiang River rail-cum-road bridge [J]. Bridge Construction, 2019, 49(2): 24 − 29. (in Chinese) doi: 10.3969/j.issn.1003-4722.2019.02.005
    [8] GAO D, DENG Z, YANG W, et al. Review of the excitation mechanism and aerodynamic flow control of vortex-induced vibration of the main girder for long-span bridges: A vortex-dynamics approach [J]. Journal of Fluids and Structures, 2021, 105: 103348. doi: 10.1016/j.jfluidstructs.2021.103348
    [9] 任森, 汪斌, 孙浩, 等. 桥面形式对桁式铁路桥梁抗风性能的影响[J]. 铁道建筑, 2017, 5(3): 21 − 25. doi: 10.3969/j.issn.1003-1995.2017.03.06

    REN Sen, WANG Bin, SUN Hao, et al. Influence of deck form on wind-resistance performance of truss-type railway bridge [J]. Railway Engineering, 2017, 5(3): 21 − 25. (in Chinese) doi: 10.3969/j.issn.1003-1995.2017.03.06
    [10] 潘韬, 肖海珠, 赵林, 等. 大跨度桥梁超宽分体三箱梁抗风性能及控制措施研究[J]. 桥梁建设, 2020, 267(增刊 2): 32 − 38.

    PAN Tao, XIAO Haizhu, ZHAO Lin, et al. Study of wind-resistant performance and control measures for very wide girder with three separated boxes in long-span bridge [J]. Bridge Construction, 2020, 267(Suppl 2): 32 − 38. (in Chinese)
    [11] 贺耀北, 周洋, 华旭刚. 双边钢主梁-UHPC组合梁涡振抑制气动措施风洞试验研究[J]. 振动与冲击, 2020, 39(20): 142 − 148.

    HE Yaobei, ZHOU Yang, HUA Xugang. A wind tunnel test on aerodynamic measures for vortex-induced vibration suppression of a bilateral steel-UHPC composite beam [J]. Journal of Vibration and Shock, 2020, 39(20): 142 − 148. (in Chinese)
    [12] 刘圣源, 胡传新, 赵林, 等. 中央开槽箱梁断面扭转涡振全过程气动力演化特性[J]. 工程力学, 2020, 37(6): 196 − 205. doi: 10.6052/j.issn.1000-4750.2019.08.0478

    LIU Shengyuan, HU Chuanxin, ZHAO Lin, et al. Aerodynamic force evolution characteristics around the central-slotting box girder during the whole torsional vortex-induced vibration process [J]. Engineering Mechanics, 2020, 37(6): 196 − 205. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0478
    [13] 李春光, 张记, 樊永波, 等. 宽幅流线型钢箱梁涡振性能气动优化措施研究[J]. 桥梁建设, 2017, 47(1): 35 − 40.

    LI Chunguang, ZHANG Ji, FAN Yongbo, et al. Study of aerodynamic optimization measures for vortex-induced vibration performance of wide streamlined steel box girder [J]. Bridge Construction, 2017, 47(1): 35 − 40. (in Chinese)
    [14] 李明, 孙延国, 李明水, 等. 宽幅流线型箱梁涡振性能及制振措施研究[J]. 西南交通大学学报, 2018, 53(4): 712 − 719. doi: 10.3969/j.issn.0258-2724.2018.04.007

    LI Ming, SUN Yanguo, LI Mingshui, et al. Vortex-induced vibration performance of wide streamlined box girder and aerodynamic countermeasure research [J]. Journal of Southwest Jiaotong University, 2018, 53(4): 712 − 719. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.04.007
    [15] 秦浩, 廖海黎, 李明水. 大跨度变截面连续钢箱梁桥涡激振动线性分析法[J]. 振动工程学报, 2015, 28(6): 966 − 971.

    QIN Hao, LIAO Haili, LI Mingshui. A linear theory of vortex-induced vibration of long span continuous steel box girder with variable cross-section [J]. Journal of Vibration Engineering, 2015, 28(6): 966 − 971. (in Chinese)
    [16] ZHANG M, XU F, YU H. A simplified model to evaluate peak amplitude for vertical vortex-induced vibration of bridge decks [J]. International Journal of Mechanical Sciences, 2020, 192: 106145.
    [17] JTG/T 3360-01−2018, 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社, 2018.

    JTG/T 3360-01−2018, Wind-resistent design specification for highway bridges [S]. Beijing: China Communications Press, 2018. (in Chinese)
    [18] 李春光, 张佳, 韩艳, 等. 栏杆基石对闭口箱梁桥梁涡振性能影响的机理[J]. 中国公路学报, 2019, 32(10): 150 − 157.

    LI Chunguang, ZHANG Jia, HAN Yan, et al. Mechanism of the influence of railing cornerstone on vortex-induced vibration of closed box girder bridge [J]. China Journal of Highway and Transport, 2019, 32(10): 150 − 157. (in Chinese)
    [19] 杨詠昕, 周锐, 罗东伟, 等. 不同槽宽分体箱梁桥梁的涡振及其控制措施[J]. 工程力学, 2017, 34(7): 23 − 40. doi: 10.6052/j.issn.1000-4750.2016.01.0046

    YANG Yongxin, ZHOU Rui, LUO Dongwei, et al. Vortex-induced vibration and its control for twin box girder bridges with various slot widths [J]. Engineering Mechanics, 2017, 34(7): 23 − 40. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.01.0046
    [20] 管青海, 李加武, 胡兆同, 等. 栏杆对典型桥梁断面涡激振动的影响研究[J]. 振动与冲击, 2014, 33(3): 150 − 156.

    GUAN Qinghai, LI Jiawu, HU Zhaotong, et al. Effects of railings on vortex-induced vibration of a bridge deck section [J]. Journal of Vibration and Shock, 2014, 33(3): 150 − 156. (in Chinese)
    [21] XU K, GE Y, ZHANG D. Wake oscillator model for assessment of vortex-induced vibration of flexible structures under wind action [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 192 − 200. doi: 10.1016/j.jweia.2014.11.002
    [22] FACCHINETTI M L, DE LANGRE E, BIOLLEY F. Coupling of structure and wake oscillators in vortex-induced vibrations [J]. Journal of Fluids and Structures, 2004, 19(2): 123 − 140. doi: 10.1016/j.jfluidstructs.2003.12.004
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  40
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 修回日期:  2021-12-24
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回