VORTEX-INDUCED VIBRATIONS OF LONG-SPAN CONTINUOUS BRIDGES WITH STEEL TRUSS-STIFFENED BOX-GIRDER
-
摘要: 主梁的大幅涡振一直是困扰跨海连续梁桥的主要病害之一,但对箱桁组合断面主梁的涡振研究较少。拟建的澳氹第四跨海大桥为一座变截面非对称钢箱桁组合连续梁桥,主梁宽度近50 m,且桥面附属结构呈非对称分布,气动外形极为复杂。该文采用1∶70缩尺比的跨中主梁断面节段模型风洞试验研究了澳氹四桥的涡振性能,对比分析了风攻角、紊流度、桥梁阻尼比、附属结构气动外形等因素对主梁断面涡振性能的影响。并通过将外侧栏杆、电缆箱、供水管、风障及防撞栏杆等桥面附属结构拆解,探讨了主梁涡振的原因。进一步比较了中跨跨中(L/2)及三分之一跨(L/3)两种不同断面的涡振性能差异。研究表明:宽幅钢箱桁组合梁断面容易在负攻角下发生大幅涡振,且不同位置两种断面涡振性能差异显著,高耸桁架的遮挡效应对该类桥梁涡脱特性影响较大;非对称横断面形式对涡振性能影响较大,减小外侧栏杆透风率以及采用布置位置合理的下扰流板可有效减小涡振幅值。基于风洞试验数据识别了涡振尾流振子模型的气动参数,准确重现了涡振幅值-风速关系曲线。Abstract: Vortex-induced vibrations (VIVs) are one of the most critical issues for continuous beam bridges with long spans. The proposed 4th Bridge at Macao is a continuous-beam bridge made of steel truss-stiffened box girders with variable height and asymmetric configuration, and the bridge girder has a width of approximately 50 m and complex aerodynamic shape owing to various accessory components. The VIV performance of the 4th Bridge at Macao is studied by wind tunnel tests on 1∶70 sectional models, and the effects of wind attack angles, turbulence intensity, structural damping, wind barrier are compared. Two typical cross sections at the L/2 and L/3 of the main span are tested. The results shown that the cross-section of truss-stiffened box-girder may generate VIVs under negative wind attack angle, and the VIV of two cross-sections at negative attack angles are different, implying the effect of truss on VIV is significant. The results also shown that the asymmetry of the cross-section may significantly affect the VIV performance of the continuous beam bridge with steel truss and variable cross-sections. The amplitude of the VIV response can be reduced effectively by lowering the permeability of the outer barrier and adopting a spoiler with a reasonable placement. Finally, the parameters of the wake oscillation model for the simulation of vortex-induced vibrations are identified based on the experimental results, which can accurately reflect the relation between the amplitude of VIV and the wind speed.
-
表 1 涡振性能风洞试验节段模型设计参数
Table 1. Design parameters of section model for vortex-induced vibrations performance wind tunnel test
参数名称 实桥值 缩尺 模型值 主梁长度/m 147.0 1/70 2.10 主梁宽度/m 48.4 1/70 0.69 主梁高度/m 3.0 1/70 0.043 等效质量/(t/m) 43.4 1/702 13.998 等效质量矩/(t·m2/m) 6772.3 1/704 0.191 对称竖弯基频/Hz 0.35 12.3∶1 4.4 对称扭转基频/Hz 0.90 11.9∶1 10.5 竖弯阻尼比 0.4~0.6 1 0.40 扭转阻尼比 0.4~0.6 1 0.45 表 2 涡振成因分析工况信息表
Table 2. Working condition information for cause analysis of vortex-induced vibrations
工况名 工况信息 工况1 去除西侧外侧栏杆 工况2 去除西侧外侧栏杆+供水管 工况3 去除西侧外侧栏杆+供水管+电缆箱 工况4 去除西侧外侧栏杆+供水管+电缆箱+风障及防撞栏杆 工况5 西侧桥面采用与东侧相同的附属结构布置 表 3 涡振尾流振子模型参数
Table 3. Parameters of wake oscillation model
失速参数γ 升力系数幅值CL0 速度耦合参数A 范德珀尔参数ε 1.023 2.42 0.307 0.025 -
[1] 陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005.CHEN Zhengqing. Wind engineering on bridges [M]. Beijing: China Communications Press, 2005. (in Chinese) [2] BATTISTA R C, PFEIL M S. Reduction of vortex-induced oscillations of Rio–Niterói bridge by dynamic control devices [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84: 273 − 288. doi: 10.1016/S0167-6105(99)00108-7 [3] FUJINO Y, YOSHIDA Y. Wind-induced vibration and control of Trans-Tokyo bay crossing bridge [J]. Journal of Structural Engineering, 2002, 128(8): 1012 − 1025. doi: 10.1061/(ASCE)0733-9445(2002)128:8(1012) [4] ZHAO L, CUI W, SHEN X M, et al. A fast on-site measure-analyze-suppress response to control vortex-induced-vibration of a long-span bridge [J]. Structures, 2022, 35: 192 − 201. doi: 10.1016/j.istruc.2021.10.017 [5] 林阳, 封周权, 华旭刚, 等. 基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法[J]. 工程力学, 2020, 37(2): 192 − 200. doi: 10.6052/j.issn.1000-4750.2019.03.0143LIN Yang, FENG Zhouquan, HUA Xugang, et al. Artificial bee colony algorithm for flutter derivatives identification of bridge decks using free vibration records [J]. Engineering Mechanics, 2020, 37(2): 192 − 200. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0143 [6] HE X, LI H, WANG H, et al. Effects of geometrical parameters on the aerodynamic characteristics of a streamlined flat box girder [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 170: 56 − 67. doi: 10.1016/j.jweia.2017.08.009 [7] 何旭辉, 张兵, 邹云峰, 等. 芜湖长江公铁大桥主桥抗风性能试验研究[J]. 桥梁建设, 2019, 49(2): 24 − 29. doi: 10.3969/j.issn.1003-4722.2019.02.005HE Xuhui, ZHANG Bing, ZOU Yunfeng, et al. Experimental research on wind-resistant performance of main bridge of Wuhu Changjiang River rail-cum-road bridge [J]. Bridge Construction, 2019, 49(2): 24 − 29. (in Chinese) doi: 10.3969/j.issn.1003-4722.2019.02.005 [8] GAO D, DENG Z, YANG W, et al. Review of the excitation mechanism and aerodynamic flow control of vortex-induced vibration of the main girder for long-span bridges: A vortex-dynamics approach [J]. Journal of Fluids and Structures, 2021, 105: 103348. doi: 10.1016/j.jfluidstructs.2021.103348 [9] 任森, 汪斌, 孙浩, 等. 桥面形式对桁式铁路桥梁抗风性能的影响[J]. 铁道建筑, 2017, 5(3): 21 − 25. doi: 10.3969/j.issn.1003-1995.2017.03.06REN Sen, WANG Bin, SUN Hao, et al. Influence of deck form on wind-resistance performance of truss-type railway bridge [J]. Railway Engineering, 2017, 5(3): 21 − 25. (in Chinese) doi: 10.3969/j.issn.1003-1995.2017.03.06 [10] 潘韬, 肖海珠, 赵林, 等. 大跨度桥梁超宽分体三箱梁抗风性能及控制措施研究[J]. 桥梁建设, 2020, 267(增刊 2): 32 − 38.PAN Tao, XIAO Haizhu, ZHAO Lin, et al. Study of wind-resistant performance and control measures for very wide girder with three separated boxes in long-span bridge [J]. Bridge Construction, 2020, 267(Suppl 2): 32 − 38. (in Chinese) [11] 贺耀北, 周洋, 华旭刚. 双边钢主梁-UHPC组合梁涡振抑制气动措施风洞试验研究[J]. 振动与冲击, 2020, 39(20): 142 − 148.HE Yaobei, ZHOU Yang, HUA Xugang. A wind tunnel test on aerodynamic measures for vortex-induced vibration suppression of a bilateral steel-UHPC composite beam [J]. Journal of Vibration and Shock, 2020, 39(20): 142 − 148. (in Chinese) [12] 刘圣源, 胡传新, 赵林, 等. 中央开槽箱梁断面扭转涡振全过程气动力演化特性[J]. 工程力学, 2020, 37(6): 196 − 205. doi: 10.6052/j.issn.1000-4750.2019.08.0478LIU Shengyuan, HU Chuanxin, ZHAO Lin, et al. Aerodynamic force evolution characteristics around the central-slotting box girder during the whole torsional vortex-induced vibration process [J]. Engineering Mechanics, 2020, 37(6): 196 − 205. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0478 [13] 李春光, 张记, 樊永波, 等. 宽幅流线型钢箱梁涡振性能气动优化措施研究[J]. 桥梁建设, 2017, 47(1): 35 − 40.LI Chunguang, ZHANG Ji, FAN Yongbo, et al. Study of aerodynamic optimization measures for vortex-induced vibration performance of wide streamlined steel box girder [J]. Bridge Construction, 2017, 47(1): 35 − 40. (in Chinese) [14] 李明, 孙延国, 李明水, 等. 宽幅流线型箱梁涡振性能及制振措施研究[J]. 西南交通大学学报, 2018, 53(4): 712 − 719. doi: 10.3969/j.issn.0258-2724.2018.04.007LI Ming, SUN Yanguo, LI Mingshui, et al. Vortex-induced vibration performance of wide streamlined box girder and aerodynamic countermeasure research [J]. Journal of Southwest Jiaotong University, 2018, 53(4): 712 − 719. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.04.007 [15] 秦浩, 廖海黎, 李明水. 大跨度变截面连续钢箱梁桥涡激振动线性分析法[J]. 振动工程学报, 2015, 28(6): 966 − 971.QIN Hao, LIAO Haili, LI Mingshui. A linear theory of vortex-induced vibration of long span continuous steel box girder with variable cross-section [J]. Journal of Vibration Engineering, 2015, 28(6): 966 − 971. (in Chinese) [16] ZHANG M, XU F, YU H. A simplified model to evaluate peak amplitude for vertical vortex-induced vibration of bridge decks [J]. International Journal of Mechanical Sciences, 2020, 192: 106145. [17] JTG/T 3360-01−2018, 公路桥梁抗风设计规范[S]. 北京: 人民交通出版社, 2018.JTG/T 3360-01−2018, Wind-resistent design specification for highway bridges [S]. Beijing: China Communications Press, 2018. (in Chinese) [18] 李春光, 张佳, 韩艳, 等. 栏杆基石对闭口箱梁桥梁涡振性能影响的机理[J]. 中国公路学报, 2019, 32(10): 150 − 157.LI Chunguang, ZHANG Jia, HAN Yan, et al. Mechanism of the influence of railing cornerstone on vortex-induced vibration of closed box girder bridge [J]. China Journal of Highway and Transport, 2019, 32(10): 150 − 157. (in Chinese) [19] 杨詠昕, 周锐, 罗东伟, 等. 不同槽宽分体箱梁桥梁的涡振及其控制措施[J]. 工程力学, 2017, 34(7): 23 − 40. doi: 10.6052/j.issn.1000-4750.2016.01.0046YANG Yongxin, ZHOU Rui, LUO Dongwei, et al. Vortex-induced vibration and its control for twin box girder bridges with various slot widths [J]. Engineering Mechanics, 2017, 34(7): 23 − 40. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.01.0046 [20] 管青海, 李加武, 胡兆同, 等. 栏杆对典型桥梁断面涡激振动的影响研究[J]. 振动与冲击, 2014, 33(3): 150 − 156.GUAN Qinghai, LI Jiawu, HU Zhaotong, et al. Effects of railings on vortex-induced vibration of a bridge deck section [J]. Journal of Vibration and Shock, 2014, 33(3): 150 − 156. (in Chinese) [21] XU K, GE Y, ZHANG D. Wake oscillator model for assessment of vortex-induced vibration of flexible structures under wind action [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 192 − 200. doi: 10.1016/j.jweia.2014.11.002 [22] FACCHINETTI M L, DE LANGRE E, BIOLLEY F. Coupling of structure and wake oscillators in vortex-induced vibrations [J]. Journal of Fluids and Structures, 2004, 19(2): 123 − 140. doi: 10.1016/j.jfluidstructs.2003.12.004 -