EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF JOINTS BETWEEN SIDEWALLS AND FLOORS IN PARTIALLY PREFABRICATED SUBWAY STATION
-
摘要: 针对半预制装配式地下车站结构,提出一种新型的车站外侧墙与底板连接节点,该节点通过车站单侧半预制墙板与底板伸出的竖向U型钢筋搭接连接来实现侧墙与底板间的内力传递。为研究该节点的抗震性能,结合实际工程设计制作了3个连接区位置各不相同的足尺预制拼装节点试件和1个现浇对比节点试件。以拟静力试验为基础,结合有限元分析,研究了节点的破坏形态、承载能力、滞回性能以及U型筋搭接连接的传力性能。研究表明:U型钢筋的搭接连接能够有效传递钢筋应力;预制拼装节点在其连接区内可能出现U型筋弯弧内部混凝土的压碎破坏以及U型筋弯弧段的断裂破坏,两种破坏形态均始于钢筋与混凝土之间的粘结退化;将U型筋搭接连接区设置于车站侧墙的腋板加强段,可以使预制拼装节点呈现出与现浇节点基本相同的承载能力、破坏形态以及滞回性能;在保证不出现钢筋粘结失效的前提下,设置于腋板加强段之外的U型筋搭接连接区可以有效提高节点的抗剪承载力。
-
关键词:
- 半预制装配式地下车站 /
- 侧墙底节点 /
- U型钢筋搭接连接 /
- 试验研究 /
- 抗震性能
Abstract: A novel joint between the sidewall and the station floor was proposed for partially prefabricated subway stations. The internal force transmission between the partially precast sidewall and corresponding subway station floor was achieved through overlapping U-bars extending from them respectively. To investigate the seismic performance of the assembly joint, three full-scale precast joint specimens with different positions of the lap connection and one full-scale cast-in-place concrete joint specimen for comparison were designed and produced based on an actual engineering project. Quasi-static tests and finite element analysis were conducted on these four full-scale joint specimens. The critical seismic performance associated with the joints, including the failure pattern, bearing capacity, hysteretic characteristics, and mechanical performance of U-bars overlapping connection were analyzed. The results show that the local concrete compression failure inside the hook of the U-bars and the brittle fracture of the loop are the two main failure modes in the lap connection of assembly joints. Both failure modules can be attributed to the degradation of the bond between reinforcement and concrete. When the U-bars are overlapped in the haunched segment, the bearing capacity, failure pattern, and hysteretic characteristics of assembly joints are similar to those of the cast-in-place concrete joints. If failure of reinforcing steel bars bonding can be prevented, the U-bars overlapped outside the haunched segment can effectively increase the shear resistance of the joints. -
表 1 承载力理论计算值
Table 1. Theoretical value of loads
试件
编号正向受弯
承载力Mu,p/
(kN·m)反向受弯
承载力Mu,n/
(kN·m)抗剪
承载力
Vu/kN正向极限
荷载Pu,p/kN反向极限
荷载Pu,n/kNPSJ1 2535.4 834.0 711.4 711.4 428.1 PSJ2 2535.4 834.0 684.8 684.8 382.6 PSJ3 2535.4 834.0 684.8 684.8 325.5 SJ1 2535.4 834.0 654.1 654.1 297.9 表 2 钢筋力学性能
Table 2. Material properties of reinforcements
直径
d/mm屈服强度
fy/(N/mm2)极限强度
fu/(N/mm2)弹性模量、
Es/GPa屈服应变
εy/με伸长率
δ/(%)10 455 550 203 2241 18.0 20 440 630 203 2167 22.0 25 435 615 200 2175 22.5 32 460 645 201 2289 27.0 表 3 试验结果
Table 3. Test results of specimens
试件 加载
方向开裂荷载
Pcr/kN开裂位移
Δcr/mm峰值荷载
Pmax/kN极限位移
Δmax/mm屈服荷载
Py/kN屈服位移
Δy/mm初始割线刚度
Sj,max/(kN/mm)延性
系数μ破坏形态 PSJ1 正向 98.1 2.5 631.8 52.6 — — 42.5 1.2 U型筋弯弧处钢筋断裂 反向 66.2 2.5 417.9 52.6 417.9 45.1 34.2 PSJ2 正向 105.0 2.5 594.0 60.1 — — 44.5 1.6 U型筋弯弧内部混凝土压碎 反向 82.0 2.5 415.4 60.1 384.4 37.5 40.3 PSJ3 正向 119.8 2.5 654.9 52.4 — — 48.4 1.7 墙身剪切破坏 反向 91.5 2.5 348.3 52.5 332.1 30.1 45.2 SJ1 正向 80.5 2.5 664.1 52.5 — — 34.2 1.7 墙身剪切破坏 反向 87.1 2.5 315.0 52.6 290.2 30.1 39.8 表 4 试验与有限元分析结果对比
Table 4. Comparison of test and FEA results.
试件 加载方向 峰值荷载
试验值Pmax/kN峰值荷载
模拟值Pmax, t/kN荷载比
Pmax, t/PmaxPSJ1 正向 631.8 798.4 1.26 反向 417.9 488.3 1.17 PSJ2 正向 594.0 786.8 1.32 反向 415.4 455.1 1.10 PSJ3 正向 654.9 684.2 1.04 反向 348.3 374.3 1.07 SJ1 正向 664.1 682.0 1.03 反向 315.0 301.4 0.96 -
[1] 赖永标, 王梦恕, 油新华, 等. 隧道与地下工程支护预制技术综述与展望[J]. 建筑技术开发, 2015, 42(1): 24 − 28. doi: 10.3969/j.issn.1001-523X.2015.01.006LAI Yongbiao, WANG Mengshu, YOU Xinhua, et al. Overview and outlook for protection and prefabrication techniques of tunnel and underground projects [J]. Building Technique Development, 2015, 42(1): 24 − 28. (in Chinese) doi: 10.3969/j.issn.1001-523X.2015.01.006 [2] 杨秀仁, 黄美群, 林放. 地铁车站预制装配式结构注浆式榫槽接头弯曲抵抗作用特性研究[J]. 土木工程学报, 2020, 53(2): 33 − 40.YANG Xiuren, HUANG Meiqun, LIN Fang. Research on bending resistance characteristics of grouted mortise-tenon joints for prefabricated metro station structures [J]. China Civil Engineering Journal, 2020, 53(2): 33 − 40. (in Chinese) [3] 杨秀仁, 林放, 黄美群. 地铁车站预制装配式结构注浆式单榫长接头抗弯承载性能试验研究[J]. 土木工程学报, 2020, 53(4): 111 − 118.YANG Xiuren, LIN Fang, HUANG Meiqun. Research on flexural bearing capability of long grouted singlemortise-tenon joints for prefabricated metro station structures [J]. China Civil Engineering Journal, 2020, 53(4): 111 − 118. (in Chinese) [4] 杜修力, 刘洪涛, 路德春, 等. 装配整体式地铁车站侧墙底节点抗震性能研究[J]. 土木工程学报, 2017, 50(4): 38 − 47.DU Xiuli, LIU Hongtao, LU Dechun, et al. Study on seismic performance of sidewall joints in assembled monolithic subway station [J]. China Civil Engineering Journal, 2017, 50(4): 38 − 47. (in Chinese) [5] LIU H T, XU C S, DU X L. Seismic response analysis of assembled monolithic subway station in the transverse direction [J]. Engineering Structures, 2020, 219: 110970. doi: 10.1016/j.engstruct.2020.110970 [6] 刘洪涛, 闫秋实, 杜修力. 钢筋混凝土框架梁柱节点灌浆套筒连接抗震性能研究[J]. 建筑结构学报, 2017, 38(9): 54 − 61.LIU Hongtao, YAN Qiushi, DU Xiuli. Study of seismic performance of reinforced concrete frame beam-column joints connected with grouted sleeves [J]. Journal of Building Structures, 2017, 38(9): 54 − 61. (in Chinese) [7] 朱张峰, 郭正兴. 装配式短肢剪力墙低周反复荷载试验[J]. 工程力学, 2013, 30(5): 125 − 130. doi: 10.6052/j.issn.1000-4750.2011.12.0871ZHU Zhangfeng, GUO Zhengxing. Low-cyclic reversed load test on new precast concrete short-leg shear wall [J]. Engineering Mechanics, 2013, 30(5): 125 − 130. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.12.0871 [8] 马军卫, 潘金龙, 尹万云, 等. 灌浆套筒连接全装配式 框架-剪力墙结构抗震性能试验研究[J]. 工程力学, 2017, 34(10): 178 − 187. doi: 10.6052/j.issn.1000-4750.2016.06.0475MA Junwei, PAN Jinlong, YIN Wanyun, et al. Experimental study on seismic performance of full precast shear wall-frame structures with reinforcement spliced by grout-filled sleeves [J]. Engineering Mechanics, 2017, 34(10): 178 − 187. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.06.0475 [9] 朱张峰, 郭正兴. 考虑竖向与水平接缝的工字形装配式混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(3): 139 − 148. doi: 10.6052/j.issn.1000-4750.2018.01.0048ZHU Zhangfeng, GUO Zhengxing. Aseismic experimental research on I-shaped precast concrete shear walls with vertical and horizontal joints [J]. Engineering Mechanics, 2019, 36(3): 139 − 148. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0048 [10] 马福栋, 邓明科, 杨勇. 超高性能混凝土装配整体式框架梁柱节点抗震性能研究[J]. 工程力学, 2021, 38(10): 90 − 102. doi: 10.6052/j.issn.1000-4750.2020.09.0682MA Fudong, DENG Mingke, YANG Yong. Seismic experimental study on a UHPC precast monolithic concrete beam-column connection [J]. Engineering Mechanics, 2021, 38(10): 90 − 102. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0682 [11] 张锡治, 张群礼, 高华超, 等. 预制混凝土墙体U型筋搭接连接抗拉承载性能研究[J]. 建筑结构学报, 2021, 42(8): 49 − 58.ZHANG Xizhi, ZHANG Qunli, GAO Huachao, et al. Study on tensile behavior of prefabricate concrete wall with U-type reinforcements overlapping connection [J]. Journal of Building Structures, 2021, 42(8): 49 − 58. (in Chinese) [12] 焦安亮, 张鹏, 李永辉, 等. 环筋扣合锚接连接预 制剪力墙抗震性能试验研究[J]. 建筑结构学报, 2015, 36(5): 103 − 109.JIAO Anliang, ZHANG Peng, LI Yonghui, et al. Experimental study on seismic performance of precast shear wall with ring reinforcement clasp and anchor joint [J]. Journal of building structures, 2015, 36(5): 103 − 109. (in Chinese) [13] DING P, TAO L J, YANG X R, et al. Three-dimensional dynamic response analysis of a single-ring structure in a prefabricated subway station [J]. Sustainable Cities and Society, 2019, 45: 271 − 286. doi: 10.1016/j.scs.2018.11.010 [14] GB 50011−2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2013.GB 50011−2010, Code for seismic design of building [S]. Beijing: China Architecture & Building Press, 2013. (in Chinese) [15] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2015.GB 50010−2010, Design code of concrete building [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese) [16] JGJ 1−2014, 装配式混凝土结构技术规程[S]. 北京: 中国建筑工业出版社, 2014.JGJ 1−2014, Technical specification for precast concrete structures [S]. Beijing: China Architecture & Building Press, 2014. (in Chinese) [17] GB/T 228. 1−2010, 金属材料拉伸试验第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2010.GB/T 228. 1−2010, Metallic materials : tensile testing : part 1 : method of test at room temperature [S]. Beijing: China Standard Press, 2010. (in Chinese) [18] GB 50157−2013, 地铁设计规范[S]. 北京: 中国计划出版社, 2013.GB 50157−2013, Code for design of metro [S]. Beijing: China Planning Press, 2013. (in Chinese) [19] HWANG H J, PARK H G, YI W J. Development length of standard hooked bar based on non-uniform bond stress distribution [J]. ACI structural journal, 2017, 114(6): 1637 − 1648. [20] GUAN D Z, JIANG C, GUO Z X, et al. Development and seismic behavior of precast concrete beam-to-column connections [J]. Journal of Earthquake Engineering, 2018, 22(2): 234 − 256. doi: 10.1080/13632469.2016.1217807 -