留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于能量系数的分层装配柔性支撑钢结构体系抗震设计与评估方法

张瑞斌 王伟

张瑞斌, 王伟. 基于能量系数的分层装配柔性支撑钢结构体系抗震设计与评估方法[J]. 工程力学, 2023, 40(2): 179-189. doi: 10.6052/j.issn.1000-4750.2021.08.0651
引用本文: 张瑞斌, 王伟. 基于能量系数的分层装配柔性支撑钢结构体系抗震设计与评估方法[J]. 工程力学, 2023, 40(2): 179-189. doi: 10.6052/j.issn.1000-4750.2021.08.0651
ZHANG Rui-bin, WANG Wei. ENERGY FACTOR BASED SEISMIC DESIGN AND EVALUATION METHOD FOR TENSION-ONLY BRACED BEAM-THROUGH STEEL FRAMES[J]. Engineering Mechanics, 2023, 40(2): 179-189. doi: 10.6052/j.issn.1000-4750.2021.08.0651
Citation: ZHANG Rui-bin, WANG Wei. ENERGY FACTOR BASED SEISMIC DESIGN AND EVALUATION METHOD FOR TENSION-ONLY BRACED BEAM-THROUGH STEEL FRAMES[J]. Engineering Mechanics, 2023, 40(2): 179-189. doi: 10.6052/j.issn.1000-4750.2021.08.0651

基于能量系数的分层装配柔性支撑钢结构体系抗震设计与评估方法

doi: 10.6052/j.issn.1000-4750.2021.08.0651
基金项目: 国家自然科学基金重点国际合作项目(51820105013);国家自然科学基金项目(51778459);同济大学土木工程I类高峰学科建设项目(2022-3-YB-18)
详细信息
    作者简介:

    张瑞斌(1994−),男,山西太原人,博士生,主要从事钢结构抗震研究(E-mail: zhangruibin@tongji.edu.cn)

    通讯作者:

    王 伟(1977−),男,江西南昌人,教授,博士,主要从事钢结构抗震研究(E-mail: weiwang@tongji.edu.cn)

  • 中图分类号: TU391;TU352.1+1

ENERGY FACTOR BASED SEISMIC DESIGN AND EVALUATION METHOD FOR TENSION-ONLY BRACED BEAM-THROUGH STEEL FRAMES

  • 摘要: 对为了实现分层装配柔性支撑钢结构体系的损伤控制行为,在建立结构体系损伤控制阶段的能量系数抗震需求指标概率模型的基础上,提出了基于能量系数的考虑抗震需求参数概率模型的抗震设计方法与评估流程。选取了一个典型的三层分层装配柔性支撑钢结构体系对所提出的设计与评估流程进行演示说明,分析结果表明:通过该文提出的抗震设计与评估流程所设计的结构能够实现损伤控制的性能目标,即损伤集中在易于更换的柔性支撑中,主框架保持弹性,从而使结构震后没有明显的残余变形。并进一步通过弹塑性时程分析验证了该方法的合理性。
  • 图  1  分层装配柔性支撑钢结构体系试验研究

    Figure  1.  Experimental studies of tension-only beam-through steel frames

    图  2  结构拟静力试验

    Figure  2.  The quasi-static test of the structure

    图  3  滞回模型与验证

    Figure  3.  Hysteretic model and verification

    图  4  能量系数图示

    Figure  4.  The illustration of energy factor

    图  5  结构滞回特性对能量系数的影响

    Figure  5.  Effect of the hysteretic parameters on energy factor

    图  6  能量系数(γ)热点图

    Figure  6.  The heat map of energy factor

    图  7  结构滞回特性对能量系数的影响

    Figure  7.  The probabilistic model of energy factor

    图  8  拟合系数

    Figure  8.  The fitting coefficients

    图  9  名义耗能能力

    Figure  9.  Nominal energy dissipation capacity

    图  10  设计和评估流程

    Figure  10.  The process for design and evaluation

    图  11  原型结构 /mm

    Figure  11.  Prototype structure

    图  12  结构中框架与支撑比例

    Figure  12.  The proportion of frame and brace in the structure

    图  13  弹塑性位移谱

    Figure  13.  Inelastic design spectra

    图  14  Opensees模型示意图

    Figure  14.  Schematic of Opensees model

    图  15  推覆分析

    Figure  15.  Pushover analysis

    图  16  伪加速度谱

    Figure  16.  Pseudo-acceleration response spectra

    图  17  时程分析结果

    Figure  17.  Results of nonlinear real time history analysis

    表  1  支撑设计参数

    Table  1.   Design parameters of braces

    楼层123
    支撑设计屈服剪力/kN143.8111.951.5
    设计受拉支撑总面积/mm2747626361
    受拉支撑个数442
    支撑截面尺寸/mm38×532×537×5
    实际受拉支撑总面积/mm2760640370
    楼层支撑抗侧刚度/(N/mm)1061489385167
    楼层抗侧刚度/(N/mm)14152119186890
    楼层框架抗侧刚度/(N/mm)353829791722
    下载: 导出CSV

    表  2  支撑设计参数

    Table  2.   Design parameters of braces

    楼层
    1□120×6H300×150×4.5×6
    2□120×6H300×150×4.5×6
    3□100×6H300×150×4.5×6
    下载: 导出CSV
  • [1] WOOD A, NOY I, PARKER M. The canterbury rebuild five years on from the christchurch earthquake [J]. Reserve Bank of New Zealand Bulletin, 2016, 79(3): 1 − 16.
    [2] BRUNEAU M, REINHORN A. Overview of the resilience concept [C]// Proceedings of the 8th US National Conference on Earthquake Engineering. San Francisco California, Earthquake Engineering Research Institute, 2006, 2040: 18 − 22.
    [3] LU X, MAO Y, CHEN Y, et al. New structural system for earthquake resilient design [J]. Journal of Earthquake and Tsunami, 2013, 7(3): 1350013.
    [4] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09

    ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: from earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09
    [5] 王伟, 赵亚硕, 方成, 等. 并联高强钢环簧组自复位抗震阻尼器研制与试验研究[J]. 工程力学, 2020, 37(4): 87 − 95. doi: 10.6052/j.issn.1000-4750.2019.06.0289

    WANG Wei, ZHAO Yashuo, FANG Cheng, et al. Development and experimental investigation of self-centering dampers with parallel high strength ring spring groups [J]. Engineering Mechanics, 2020, 37(4): 87 − 95. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0289
    [6] 杨博雅, 吕西林. 预应力预制混凝土剪力墙结构直接基于位移的抗震设计方法及应用[J]. 工程力学, 2018, 35(2): 59 − 66, 75. doi: 10.6052/j.issn.1000-4750.2016.09.0731

    YANG Boya, LYU Xilin. Direct displacement-based aseismic design and application for prestressed precast concrete shear-wall structures [J]. Engineering Mechanics, 2018, 35(2): 59 − 66, 75. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.09.0731
    [7] 王伟, 陈以一, 余亚超, 等. 分层装配式支撑钢结构工业化建筑体系[J]. 建筑结构, 2012, 40(10): 48 − 52.

    WANG Wei, CHEN Yiyi, YU Yazhao, et al. Floor-by-floor assembled steel braced structures for prefabricated buildings [J]. Building Structure, 2012, 40(10): 48 − 52. (in Chinese)
    [8] 王伟, 胡书领, 邹超, 等. 节点性能对分层装配支撑钢框架抗震性能的影响研究[J]. 工程力学, 2019, 36(4): 206 − 213. doi: 10.6052/j.issn.1000-4750.2018.03.0127

    WANG Wei, HU Shuling, ZOU Chao, et al. The effects of joint behavior on the seismic performance of floor-by-floor assembled steel beam-through braced frames [J]. Engineering Mechanics, 2019, 36(4): 206 − 213. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0127
    [9] DONG B, CHEN Y, WANG W. Self-centering mechanism and seismic response of steel tension-only concentrically braced beam-through frames [J]. Structures, 2021, 30: 960 − 972. doi: 10.1016/j.istruc.2021.01.060
    [10] HATZIGEORGIOU G D. Behavior factors for nonlinear structures subjected to multiple near-fault earthquakes [J]. Computers & Structures, 2010, 88(5/6): 309 − 321.
    [11] XIANG Y, KOETAKA Y. Ductility demand of bilinear hysteretic systems with large post-yield stiffness: Spectral model and application in the seismic design of dual-systems [J]. Engineering Structures, 2019, 187: 504 − 517. doi: 10.1016/j.engstruct.2019.02.011
    [12] 柯珂, 陈以一. 基于能量系数的损伤控制结构评估及其在钢框架中的应用[J]. 建筑结构学报, 2015, 36(5): 133 − 139.

    KE Ke, CHEN Yiyi. Assessment of damage-control structures using energy factors and application in steel frames [J]. Journal of Building Structures, 2015, 36(5): 133 − 139. (in Chinese)
    [13] HEIDARI A, GHAREHBAGHI S. Seismic performance improvement of special truss moment frames using damage and energy concepts [J]. Earthquake Engineering & Structural Dynamics, 2015, 44(7): 1055 − 1073.
    [14] QIU C X, ZHU S. Performance-based seismic design of self-centering steel frames with SMA-based braces [J]. Engineering Structures, 2017, 130: 67 − 82. doi: 10.1016/j.engstruct.2016.09.051
    [15] XIANG Y, LUO Y F, HUANG Q L, et al. Probabilistic inelastic seismic demand spectra for large-span planar steel structures subjected to vertical ground motions [J]. Engineering Structures, 2018, 174: 646 − 662. doi: 10.1016/j.engstruct.2018.07.087
    [16] WANG W, ZHOU Q, CHEN Y, et al. Experimental and numerical investigation on full-scale tension-only concentrically braced steel beam-through frames [J]. Journal of Constructional Steel Research, 2013, 80: 369 − 385. doi: 10.1016/j.jcsr.2012.10.002
    [17] CHEN Y, WANG W, CHEN Y. Full-scale shake table tests of the tension-only concentrically braced steel beam-through frame [J]. Journal of Constructional Steel Research, 2018, 148: 611 − 626. doi: 10.1016/j.jcsr.2018.06.017
    [18] HOUSNER G W. Limit design of structures to resist earthquakes [C]// Proceedings of the First World Conference on Earthquake Engineering. Berkeley California, Earthquake Engineering Research Institute, 1956.
    [19] NEWMARK N M, HALL W J. Earthquake spectra and design [M]. Berkeley California: Earthquake Engineering Research Institute, 1982.
    [20] LEE S S. Performance-based design of steel moment frames using target drift and yield mechanism [D]. Ann Arbor: University of Michigan, 2002.
    [21] KE K, KE S, CHUAN G. The energy factor of systems considering multiple yielding stages during ground motions [J]. Soil Dynamics & Earthquake Engineering, 2015, 71: 42 − 48.
    [22] ZHANG R, WANG W, KE K. Quantification of seismic demands of damage-control tension-only concentrically braced steel beam-through frames (TCBSBFs) subjected to near-fault ground motions based on the energy factor [J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105910. doi: 10.1016/j.soildyn.2019.105910
    [23] T/CECS 598−2019, 分层装配支撑钢框架房屋技术规程[S]. 北京: 中国建筑工业出版社, 2019.

    T/CECS 598−2019, Technical specification for buildings with floor-by-floor assembled steel braced frames [S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
    [24] 王伟, 邹超, 陈以一, 等. 基于均匀层间位移的多层梁贯通式支撑钢框架简化抗震设计方法[J]. 建筑结构学报, 2016, 37(6): 107 − 114.

    WANG Wei, ZOU Chao, CHEN Yiyi, et al. Seismic design method of multistory concentrically braced beam-through frames aimed at uniform inter-story drift [J]. Journal of Building Structures, 2016, 37(6): 107 − 114. (in Chinese)
    [25] CHAO S H, GOEL S C, LEE S S. A seismic design lateral force distribution based on inelastic state of structures [J]. Earthquake Spectra, 2007, 23: 547 − 569.
    [26] 王慧. 贯通式H梁-方管柱端板连接节点试验研究[D]. 上海: 同济大学, 2016.

    WANG Hui. Experimental study of beam-column end-plate joint with continuous H-section beam and square tubular column [D]. Shanghai: Tongji University, 2016. (in Chinese)
    [27] 陈越时. 梁贯通式柔性支撑钢框架抗震性能和震后变形可恢复性研究[D]. 上海: 同济大学, 2018.

    CHEN Yueshi. Seismic performance and deformation recoverability of tension-only concentrically braced steel beam-through frames [D]. Shanghai: Tongji University, 2018. (in Chinese)
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  103
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-22
  • 修回日期:  2021-11-18
  • 录用日期:  2021-12-10
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回