ENERGY FACTOR BASED SEISMIC DESIGN AND EVALUATION METHOD FOR TENSION-ONLY BRACED BEAM-THROUGH STEEL FRAMES
-
摘要: 对为了实现分层装配柔性支撑钢结构体系的损伤控制行为,在建立结构体系损伤控制阶段的能量系数抗震需求指标概率模型的基础上,提出了基于能量系数的考虑抗震需求参数概率模型的抗震设计方法与评估流程。选取了一个典型的三层分层装配柔性支撑钢结构体系对所提出的设计与评估流程进行演示说明,分析结果表明:通过该文提出的抗震设计与评估流程所设计的结构能够实现损伤控制的性能目标,即损伤集中在易于更换的柔性支撑中,主框架保持弹性,从而使结构震后没有明显的残余变形。并进一步通过弹塑性时程分析验证了该方法的合理性。Abstract: In order to realize the damage-control behavior of tension-only concentrically braced beam-through steel structural systems, the energy factor seismic demand index probability model of the structural system in the damage control stage is firstly established, and then the seismic design and evaluation method is proposed based on the energy factor incorporating the probability model of the seismic demand. A typical three-story tension-only concentrically braced beam-through steel structural system is selected to demonstrate the proposed design and evaluation process. The analysis results show that the structure designed through the seismic design and evaluation process proposed in this paper can achieve damage-control performance, that is, the damage is concentrated in the tension-only braces which can be easily replaced and the main frame remains elastic, thus no obvious residual deformation after earthquakes. Furthermore, the rationality of the method is verified by time history analysis.
-
表 1 支撑设计参数
Table 1. Design parameters of braces
楼层 1 2 3 支撑设计屈服剪力/kN 143.8 111.9 51.5 设计受拉支撑总面积/mm2 747 626 361 受拉支撑个数 4 4 2 支撑截面尺寸/mm 38×5 32×5 37×5 实际受拉支撑总面积/mm2 760 640 370 楼层支撑抗侧刚度/(N/mm) 10614 8938 5167 楼层抗侧刚度/(N/mm) 14152 11918 6890 楼层框架抗侧刚度/(N/mm) 3538 2979 1722 表 2 支撑设计参数
Table 2. Design parameters of braces
楼层 柱 梁 1 □120×6 H300×150×4.5×6 2 □120×6 H300×150×4.5×6 3 □100×6 H300×150×4.5×6 -
[1] WOOD A, NOY I, PARKER M. The canterbury rebuild five years on from the christchurch earthquake [J]. Reserve Bank of New Zealand Bulletin, 2016, 79(3): 1 − 16. [2] BRUNEAU M, REINHORN A. Overview of the resilience concept [C]// Proceedings of the 8th US National Conference on Earthquake Engineering. San Francisco California, Earthquake Engineering Research Institute, 2006, 2040: 18 − 22. [3] LU X, MAO Y, CHEN Y, et al. New structural system for earthquake resilient design [J]. Journal of Earthquake and Tsunami, 2013, 7(3): 1350013. [4] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 − 12. doi: 10.6052/j.issn.1000-4750.2018.07.ST09ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: from earthquake resistance, energy dissipation, and isolation, to resilience [J]. Engineering Mechanics, 2019, 36(6): 1 − 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.ST09 [5] 王伟, 赵亚硕, 方成, 等. 并联高强钢环簧组自复位抗震阻尼器研制与试验研究[J]. 工程力学, 2020, 37(4): 87 − 95. doi: 10.6052/j.issn.1000-4750.2019.06.0289WANG Wei, ZHAO Yashuo, FANG Cheng, et al. Development and experimental investigation of self-centering dampers with parallel high strength ring spring groups [J]. Engineering Mechanics, 2020, 37(4): 87 − 95. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.06.0289 [6] 杨博雅, 吕西林. 预应力预制混凝土剪力墙结构直接基于位移的抗震设计方法及应用[J]. 工程力学, 2018, 35(2): 59 − 66, 75. doi: 10.6052/j.issn.1000-4750.2016.09.0731YANG Boya, LYU Xilin. Direct displacement-based aseismic design and application for prestressed precast concrete shear-wall structures [J]. Engineering Mechanics, 2018, 35(2): 59 − 66, 75. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.09.0731 [7] 王伟, 陈以一, 余亚超, 等. 分层装配式支撑钢结构工业化建筑体系[J]. 建筑结构, 2012, 40(10): 48 − 52.WANG Wei, CHEN Yiyi, YU Yazhao, et al. Floor-by-floor assembled steel braced structures for prefabricated buildings [J]. Building Structure, 2012, 40(10): 48 − 52. (in Chinese) [8] 王伟, 胡书领, 邹超, 等. 节点性能对分层装配支撑钢框架抗震性能的影响研究[J]. 工程力学, 2019, 36(4): 206 − 213. doi: 10.6052/j.issn.1000-4750.2018.03.0127WANG Wei, HU Shuling, ZOU Chao, et al. The effects of joint behavior on the seismic performance of floor-by-floor assembled steel beam-through braced frames [J]. Engineering Mechanics, 2019, 36(4): 206 − 213. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0127 [9] DONG B, CHEN Y, WANG W. Self-centering mechanism and seismic response of steel tension-only concentrically braced beam-through frames [J]. Structures, 2021, 30: 960 − 972. doi: 10.1016/j.istruc.2021.01.060 [10] HATZIGEORGIOU G D. Behavior factors for nonlinear structures subjected to multiple near-fault earthquakes [J]. Computers & Structures, 2010, 88(5/6): 309 − 321. [11] XIANG Y, KOETAKA Y. Ductility demand of bilinear hysteretic systems with large post-yield stiffness: Spectral model and application in the seismic design of dual-systems [J]. Engineering Structures, 2019, 187: 504 − 517. doi: 10.1016/j.engstruct.2019.02.011 [12] 柯珂, 陈以一. 基于能量系数的损伤控制结构评估及其在钢框架中的应用[J]. 建筑结构学报, 2015, 36(5): 133 − 139.KE Ke, CHEN Yiyi. Assessment of damage-control structures using energy factors and application in steel frames [J]. Journal of Building Structures, 2015, 36(5): 133 − 139. (in Chinese) [13] HEIDARI A, GHAREHBAGHI S. Seismic performance improvement of special truss moment frames using damage and energy concepts [J]. Earthquake Engineering & Structural Dynamics, 2015, 44(7): 1055 − 1073. [14] QIU C X, ZHU S. Performance-based seismic design of self-centering steel frames with SMA-based braces [J]. Engineering Structures, 2017, 130: 67 − 82. doi: 10.1016/j.engstruct.2016.09.051 [15] XIANG Y, LUO Y F, HUANG Q L, et al. Probabilistic inelastic seismic demand spectra for large-span planar steel structures subjected to vertical ground motions [J]. Engineering Structures, 2018, 174: 646 − 662. doi: 10.1016/j.engstruct.2018.07.087 [16] WANG W, ZHOU Q, CHEN Y, et al. Experimental and numerical investigation on full-scale tension-only concentrically braced steel beam-through frames [J]. Journal of Constructional Steel Research, 2013, 80: 369 − 385. doi: 10.1016/j.jcsr.2012.10.002 [17] CHEN Y, WANG W, CHEN Y. Full-scale shake table tests of the tension-only concentrically braced steel beam-through frame [J]. Journal of Constructional Steel Research, 2018, 148: 611 − 626. doi: 10.1016/j.jcsr.2018.06.017 [18] HOUSNER G W. Limit design of structures to resist earthquakes [C]// Proceedings of the First World Conference on Earthquake Engineering. Berkeley California, Earthquake Engineering Research Institute, 1956. [19] NEWMARK N M, HALL W J. Earthquake spectra and design [M]. Berkeley California: Earthquake Engineering Research Institute, 1982. [20] LEE S S. Performance-based design of steel moment frames using target drift and yield mechanism [D]. Ann Arbor: University of Michigan, 2002. [21] KE K, KE S, CHUAN G. The energy factor of systems considering multiple yielding stages during ground motions [J]. Soil Dynamics & Earthquake Engineering, 2015, 71: 42 − 48. [22] ZHANG R, WANG W, KE K. Quantification of seismic demands of damage-control tension-only concentrically braced steel beam-through frames (TCBSBFs) subjected to near-fault ground motions based on the energy factor [J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105910. doi: 10.1016/j.soildyn.2019.105910 [23] T/CECS 598−2019, 分层装配支撑钢框架房屋技术规程[S]. 北京: 中国建筑工业出版社, 2019.T/CECS 598−2019, Technical specification for buildings with floor-by-floor assembled steel braced frames [S]. Beijing: China Architecture & Building Press, 2019. (in Chinese) [24] 王伟, 邹超, 陈以一, 等. 基于均匀层间位移的多层梁贯通式支撑钢框架简化抗震设计方法[J]. 建筑结构学报, 2016, 37(6): 107 − 114.WANG Wei, ZOU Chao, CHEN Yiyi, et al. Seismic design method of multistory concentrically braced beam-through frames aimed at uniform inter-story drift [J]. Journal of Building Structures, 2016, 37(6): 107 − 114. (in Chinese) [25] CHAO S H, GOEL S C, LEE S S. A seismic design lateral force distribution based on inelastic state of structures [J]. Earthquake Spectra, 2007, 23: 547 − 569. [26] 王慧. 贯通式H梁-方管柱端板连接节点试验研究[D]. 上海: 同济大学, 2016.WANG Hui. Experimental study of beam-column end-plate joint with continuous H-section beam and square tubular column [D]. Shanghai: Tongji University, 2016. (in Chinese) [27] 陈越时. 梁贯通式柔性支撑钢框架抗震性能和震后变形可恢复性研究[D]. 上海: 同济大学, 2018.CHEN Yueshi. Seismic performance and deformation recoverability of tension-only concentrically braced steel beam-through frames [D]. Shanghai: Tongji University, 2018. (in Chinese) -