RESEARCH ON LATERAL RIGIDITY OF SHARPLY CURVED BRIDGE PIER IN MODERN TRAM LINE
-
摘要: 现代有轨电车小半径曲线桥梁桥墩横向刚度对线路的平顺性有重要影响。基于有限元法,建立曲线桥梁-无缝线路空间耦合作用计算模型,以某35 m+40 m+40 m+35 m曲线钢-混组合桥为例,分析了多种因素对轨向不平顺的影响。结果表明:曲线桥上无缝线路会因纵、横向梁轨耦合作用引起中长波的轨向不平顺;轨向不平顺幅值与桥墩纵向刚度、轨温变化幅度、扣件纵向阻力极限荷载正相关,与桥墩横向刚度、曲线半径、扣件纵向阻力弹塑性临界位移负相关,其中曲线半径影响最为显著;曲线半径从150 m增加至600 m,中点弦测法、矢距差法所确定的轨向不平顺幅值降幅均超过60%;确定了有轨电车常用跨度连续梁桥在不同曲线半径条件下对应的桥墩横向刚度限值,其中钢-混组合桥对应桥墩横向刚度限值是同等条件钢筋混凝土桥的1.2倍~2.0倍。建议曲线桥上无缝线路设计中优化锁定轨温,或采用小阻力扣件,可有效降低因梁轨相互作用引起的轨向不平顺幅值和桥墩横向刚度限值。Abstract: The lateral rigidity of a sharply curved bridge (SCB) pier has an important impact on regularities of the track in modern tram lines. A spatial calculation model for SCB-CWR (continuous welded rail) interaction is established by the grounds of the finite element method. Taking the example of a curved steel-concrete composite bridge with spans of 35 m+40 m+40 m+35 m, the effects of different factors on TAI (track alignment irregularity) are analyzed. The results show that the coupling between longitudinal and lateral SCB-CWR interactions can cause middle and long wave TAI. The amplitude of TAI shows a positive correlation with longitudinal rigidity of a pier, with the variation range of rail temperature and, with the maximum force of fastener longitudinal resistance, but a negative correlation with lateral rigidity of a pier, with curve radius and, with the yield displacement of fastener longitudinal resistance. The most significant factor is curve radius. When the radius increases from 150 m to 600 m, the amplitudes of TAI determined by the mid-chord offset method and by the differential offset method reduce by more than 60%. The lateral rigidity thresholds of piers for common curved continuous beam bridges in modern tram lines are ascertained respectively. The thresholds of steel-concrete composite bridges are 1.2~2.0 times greater than that of reinforced concrete bridges. Optimizing design stress-free rail temperature or using small resistance fastener which can effectively reduce the amplitude of TAI and the lateral rigidity thresholds of piers are recommended to be applied during the design of CWR on SCB.
-
表 1 轨向不平顺容许偏差
Table 1. Allowable deviation of TAI
测试方法 容许偏差/mm 备注 中点弦测法 2 2Lb=10 m 矢距差法 2 L=30 m、l=5 m 10 L=300 m、l=150 m 表 2 桥墩横向刚度限值
Table 2. lateral rigidity thresholds of piers
曲线
半径/
m横向刚度/(kN/cm)
35 m+40 m+40 m+35 m
30 m+30 m+30 m+30 m
30 m+30 m+30 m混 钢 混凝土 钢 混凝土 钢 150 2150 − 1280 1970 1020 1740 250 1110 2230 800 1000 510 780 350 730 920 460 610 340 500 450 550 660 360 460 270 410 注:“−”表示刚度超过3000 kN/cm。 -
[1] LI Y, CAI Q Y, XU Y J, et al. Design of real-time actuated control system for modern tram at arterial intersections based on logic rules [J]. Advances in Mechanical Engineering, 2018, 10(12): 1 − 13. [2] 张昭, 杨新文, 马骙骙, 等. 现代有轨电车线路扣件系统模态与钢轨波磨关系研究[J]. 工程力学, 2021, 38(9): 1 − 8. doi: 10.6052/j.issn.1000-4750.2020.12.0910ZHANG Zhao, YANG Xinwen, MA Kuikui, et al. Study on relationship between fastener system mode and rail corrugation of modern tram line [J]. Engineering Mechanics, 2021, 38(9): 1 − 8. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0910 [3] 王春生, 徐有良, 赵会东, 等. 城市轨道交通钢桥疲劳损伤等效系数研究[J]. 工程力学, 2020, 37(2): 62 − 69. doi: 10.6052/j.issn.1000-4750.2019.01.0091WANG Chunsheng, XU Youliang, ZHAO Huidong, et al. Study of damage equivalent factors of urban rail transit steel bridge [J]. Engineering Mechanics, 2020, 37(2): 62 − 69. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0091 [4] 杨阳, 沈健, 王孔明, 等. 弹性车轮作用下低地板有轨电车轮轨磨耗研究[J]. 中国机械工程, 2021, 32(4): 439 − 445.YANG Yang, SHEN Jian, WANG Kongming, et al. Research on low floor tram wheel and rail wear under resilient wheels [J]. China Mechanical Engineering, 2021, 32(4): 439 − 445. (in Chinese) [5] 冯玉林, 蒋丽忠, 陈梦成, 等. 连续梁桥边墩不均匀沉降下轨道层间变形协调关系及动力学应用[J]. 工程力学, 2021, 38(4): 179 − 190. doi: 10.6052/j.issn.1000-4750.2020.06.0373FENG Yulin, JIANG Lizhong, CHEN Mengcheng, et al. Deformation compatibility relationship of track interlayer with uneven settlement of side pier of continuous girder bridge and its dynamic application [J]. Engineering Mechanics, 2021, 38(4): 179 − 190. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0373 [6] 张乾, 蔡小培, 蔡向辉, 等. 齿轨铁路轨道-简支梁桥相互作用及轨缝合理位置研究[J]. 工程力学, 2021, 38(3): 248 − 256. doi: 10.6052/j.issn.1000-4750.2020.04.0269ZHANG Qian, CAI Xiaopei, CAI Xianghui, et al. Research on simply supported beam-track interaction and reasonable gap position of rack railway [J]. Engineering Mechanics, 2021, 38(3): 248 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0269 [7] STRAUSS A, KARIMI S, ŠOMODÍKOVÁ M, et al. Monitoring based nonlinear system modeling of bridge-continuous welded rail interaction [J]. Engineering Structures, 2018, 155: 25 − 35. doi: 10.1016/j.engstruct.2017.10.053 [8] XIE K Z, ZHAO W G, CAI X P, et al. Interaction between track and long-span cable-stayed bridge: recommendations for calculation [J]. Mathematical Problems in Engineering, 2020, 2020: 1 − 14. [9] MIRI A, THAMBIRATNAM D P, CHAN T. Thermal challenges of replacing jointed rails with CWR on steel railway bridges [J]. Journal of Constructional Steel Research, 2021, 181: 1 − 15. [10] LIU W S, LAI H, DAI G L, et al. Numerical study on track–bridge interaction of integral railway rigid-frame bridge [J]. Applied Sciences, 2021, 11(3): 1 − 17. [11] FANG H, CHEN Z W. Method for determining longitudinal stiffness of combined double thin-walled pier based on train-track-bridge interaction [J]. Advances in Civil Engineering, 2020, 2020: 1 − 8. [12] 蔡小培, 谭茜元, 刘万里, 等. 无砟轨道简支梁桥墩纵向刚度限值研究[J]. 铁道工程学报, 2019, 36(11): 38 − 44. doi: 10.3969/j.issn.1006-2106.2019.11.007CAI Xiaopei, TAN Xiyuan, LIU Wanli, et al. Research on the limit value of pier longitudinal stiffness of simply supported beam bridge paved with ballastless track [J]. Journal of Railway Engineering Society, 2019, 36(11): 38 − 44. (in Chinese) doi: 10.3969/j.issn.1006-2106.2019.11.007 [13] 戴公连, 朱俊樸, 闫斌. 30t轴重重载铁路简支梁桥上无缝线路纵向力研究[J]. 土木工程学报, 2015, 48(8): 60 − 69.DAI Gonglian, ZHU Junpu, YAN Bin. Longitudinal force of continuous welded rail on simply-supported bridge under 30t axle load heavy haul [J]. China Civil Engineering Journal, 2015, 48(8): 60 − 69. (in Chinese) [14] 马旭峰, 谢铠泽, 王伟平, 等. 采用小阻力扣件的单线连续梁桥墩纵向刚度限值研究[J]. 铁道标准设计, 2015, 59(1): 21 − 24.MA Xufeng, XIE Kaize, WANG Weiping, et al. The limits of longitudinal stiffness of single continuous beam piers with small resistance fasteners [J]. Railway Standard Design, 2015, 59(1): 21 − 24. (in Chinese) [15] 冯青松, 孙魁, 罗信伟, 等. 简支梁桥上嵌入式轨道无缝线路优化分析[J]. 华中科技大学学报(自然科学版), 2018, 46(5): 127 − 132.FENG Qingsong, SUN Kui, LUO Xinwei, et al. Optimization analysis on embedded track continuous welded rail on simple supported beam bridge [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(5): 127 − 132. (in Chinese) [16] 戴佳程, 李朋, 刘浩, 等. 城市轨道交通简支梁桥桥墩纵向水平刚度限值研究[J]. 铁道建筑, 2020, 60(7): 18 − 22.DAI Jiacheng, LI Peng, LIU Hao, et al. Research on stiffness limit of bridge piers for simply supported girder bridges in urban rail transit [J]. Railway Engineering, 2020, 60(7): 18 − 22. (in Chinese) [17] 徐浩, 林红松, 颜华. 桥墩纵向水平刚度对简支梁桥桥上无缝线路的影响分析[J]. 铁道科学与工程学报, 2016, 13(5): 871 − 875. doi: 10.3969/j.issn.1672-7029.2016.05.012XU Hao, LIN Hongsong, YAN Hua. Analyzing the impact of longitudinal rigidity of piers on CWR track on simply supported girder bridge [J]. Journal of Railway Science and Engineering, 2016, 13(5): 871 − 875. (in Chinese) doi: 10.3969/j.issn.1672-7029.2016.05.012 [18] 张鹏飞, 桂昊, 高亮, 等. 桥上CRTS II型板式无砟轨道制动力影响因素分析[J]. 铁道工程学报, 2018, 35(7): 30 − 35, 108. doi: 10.3969/j.issn.1006-2106.2018.07.006ZHANG Pengfei, GUI Hao, GAO Liang, et al. Analysis of influencing factors of braking force of CRTS II slab track on bridge [J]. Journal of Railway Engineering Society, 2018, 35(7): 30 − 35, 108. (in Chinese) doi: 10.3969/j.issn.1006-2106.2018.07.006 [19] 宁晓骏, 李小珍, 强士中. 高速铁路桥墩横向刚度的初步研究[J]. 西南交通大学学报, 2000, 35(1): 11 − 13. doi: 10.3969/j.issn.0258-2724.2000.01.003NING Xiaojun, LI Xiaozhen, QIANG Shizhong. A study on lateral rigidity of bridge pier in high speed railway [J]. Journal of Southwest Jiaotong University, 2000, 35(1): 11 − 13. (in Chinese) doi: 10.3969/j.issn.0258-2724.2000.01.003 [20] 吴定俊, 李守龙, 项海帆. 墩体设计对梁跨结构振动的影响[J]. 铁道学报, 2002, 24(6): 73 − 77. doi: 10.3321/j.issn:1001-8360.2002.06.017WU Dingjun, LI Shoulong, XIANG Haifan. Effects of pier design on superstructure vibration [J]. Journal of the China Railway Society, 2002, 24(6): 73 − 77. (in Chinese) doi: 10.3321/j.issn:1001-8360.2002.06.017 [21] 李运生, 阎贵平, 王元清, 等. 铁路桥墩横向刚度设计标准的研究[J]. 铁道科学与工程学报, 2007, 4(1): 44 − 48. doi: 10.3969/j.issn.1672-7029.2007.01.009LI Yunsheng, YAN Guiping, WANG Yuanqing, et al. Study of design standard for lateral stiffness of railway bridge piers [J]. Journal of Railway Science and Engineering, 2007, 4(1): 44 − 48. (in Chinese) doi: 10.3969/j.issn.1672-7029.2007.01.009 [22] 李静, 蒋秀根, 王宏志, 等. 解析型弹性地基Timoshenko梁单元[J]. 工程力学, 2018, 35(2): 221 − 229, 248. doi: 10.6052/j.issn.1000-4750.2016.10.0834LI Jing, JIANG Xiugen, WANG Hongzhi, et al. Analytical element for Timoshenko beam on elastic foundation [J]. Engineering Mechanics, 2018, 35(2): 221 − 229, 248. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.10.0834 [23] 谢铠泽, 赵维刚, 蔡小培, 等. 悬索桥初始内力与几何非线性对梁轨相互作用的影响[J]. 交通运输工程学报, 2020, 20(1): 82 − 91.XIE Kaize, ZHAO Weigang, CAI Xiaopei, et al. Impacts of initial internal force and geometric nonlinearity of suspension bridge on bridge-rail interaction [J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 82 − 91. (in Chinese) [24] TB 10015−2012, 铁路无缝线路设计规范 [S]. 北京: 中国铁道出版社, 2012.TB 10015−2012, Code for design of railway continuous welded rail [S]. Beijing: China Railway Publishing House, 2012. (in Chinese) [25] 王平, 肖杰灵, 陈嵘, 等. 高速铁路桥上无缝线路技术 [M]. 北京: 中国铁道出版社, 2016.WANG Ping, XIAO Jieling, CHEN Rong, et al. Technology of continuous welded rail on bridges for high-speed railway [M]. Beijing: China Railway Publishing House, 2016. (in Chinese) [26] 吴定俊, 石龙, 李奇. 梁轨纵向位移阻力系数双弹簧模型研究[J]. 工程力学, 2015, 32(10): 75 − 81. doi: 10.6052/j.issn.1000-4750.2014.04.0297WU Dingjun, SHI Long, LI Qi. A double-spring model for longitudinal displacement-resistance relationship of fasteners in rail-bridge interaction analysis [J]. Engineering Mechanics, 2015, 32(10): 75 − 81. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.04.0297 [27] ZHANG Y T, JIANG L Z, ZHOU W B, et al. Study of bridge-subgrade longitudinal constraint range for the simply-supported beam bridge of high-speed railway with CRTS II ballastless track under earthquake excitation [J]. Construction and Building Materials, 2020, 241(4): 1 − 14. [28] 李群锋. 预应力混凝土曲线箱梁桥的结构力学行为研究[D]. 长沙: 湖南大学, 2011.LI Qunfeng. Study on mechanical behaviors of prestressed concrete curved box-girder bridges [D]. Changsha: Hunan University, 2011. (in Chinese) [29] TB 10621−2014, 高速铁路设计规范 [S]. 北京: 中国铁道出版社, 2014.TB 10621−2014, Code for design of high speed railway [S]. Beijing: China Railway Publishing House, 2014. (in Chinese) -