PROPERTY EVOLUTION AND LIQUEFACTION STAGE CHARACTERISTICS OF SATURATED SAND UNDER CYCLIC LOADING
-
摘要: 正确认识饱和砂土在液化过程中的性质演变规律是解决可液化土层大变形问题的关键。通过饱和砂土不排水三轴试验,研究了饱和砂土液化过程中剪应力-剪应变关系、孔压增长速率和流动性的演化规律。发现饱和砂土由固态向液态的转变过程存在显著的阶段性特征,饱和砂土的液化过程可根据孔压比增长速率特征点划分为固态、固-液过渡、触变性流体及稳定流体四个阶段,而土体的孔压比增长速率与其产生的残余剪应变相关;围压和循环应力比会影响土体液化过程中各阶段的持续时间,围压越低、循环应力比越高,饱和砂土越容易从固体阶段转变为流体阶段;饱和南京细砂从一个阶段进入另一个阶段的所需振次与对应的孔压比之间呈线性关系。Abstract: Correctly evaluating the property evolution of saturated sand in the liquefaction process is the key to solving the problem of large deformation of liquefiable soil. The undrained triaxial tests of saturated sand were conducted to study the relationship between shear stress and shear strain, the excess pore water pressure development rate and, the growth of liquidity during the liquefaction. The investigation results showed that the transformation process of saturated sand from solid phase to liquid phase displayed a significant stage characteristic. The liquefaction process of saturated sand could be divided into four stages: solid stage, solid-liquid transition stage, thixotropic fluid stage and, stable fluid stage according to pore pressure ratio development rate which is related to the residual shear strain of soil. Confining pressure and cyclic stress ratio would affect the duration of each stage in the process of soil liquefaction. The lower the confining pressure and the higher the cyclic stress ratio, the easier for saturated sand to transform from solid stage to fluid stage. A linear relationship between the required cycles of saturated Nanjing fine sand from one stage to another and the corresponding pore pressure ratio was found in this study.
-
表 1 试验工况
Table 1. Test conditions
工况 围压
$ \sigma _{ {\rm{c} }}' /{\rm{kPa} } $循环应力比
CSR工况 围压
$ \sigma _{ {\rm{c} }}' /{\rm{kPa} } $循环应力比
CSRT1 50 0.18 T4 100 0.21 T2 100 0.15 T5 150 0.18 T3 100 0.18 T6 150 0.21 -
[1] 邹佑学, 王睿, 张建民. 碎石桩加固可液化场地数值模拟与分析[J]. 工程力学, 2019, 36(10): 152 − 163. doi: 10.6052/j.issn.1000-4750.2018.10.0559ZOU Youxue, WANG Rui, ZHANG Jianmin. Numerical investigation on liquefaction mitigation of liquefiable soil improved by stone columns [J]. Engineering Mechanics, 2019, 36(10): 152 − 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0559 [2] 曹振中, 袁晓铭, 陈龙伟, 等. 汶川大地震液化宏观现象概述[J]. 岩土工程学报, 2010, 32(4): 645 − 650.CAO Zhenzhong, YUAN Xiaoming, CHEN Longwei, et al. Summary of liquefaction macrophenomena in Wenchuan Earthquake [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 645 − 650. (in Chinese) [3] 徐丹, 杜春波, 王涛, 等. 可液化场地高桩桥梁振动台模型试验研究[J]. 工程力学, 2020, 37(增刊): 168 − 171. doi: 10.6052/j.issn.1000-4750.2019.05.S031XU Dan, DU Chunbo, WANG Tao, et al. Shaking table test on elevated pile bridges in liquefiable ground [J]. Engineering Mechanics, 2020, 37(Suppl): 168 − 171. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.S031 [4] YANG Z X, PAN K. Flow deformation and cyclic resistance of saturated loose sand considering initial static shear effect [J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 68 − 78. doi: 10.1016/j.soildyn.2016.09.002 [5] PRIME N, DUFOUR F, DARVE F. Unified model for geomaterial solid/fluid states and the transition in between [J]. Journal of Engineering Mechanics, 2014, 140(6): 1 − 10. [6] 王小雯, 张建民. 随机波浪作用下饱和砂质海床弹塑性动力响应规律[J]. 工程力学, 2018, 35(6): 240 − 248, 256. doi: 10.6052/j.issn.1000-4750.2017.02.0157WANG Xiaowen, ZHANG Jianmin. Elastoplastic dynamic behaviors of saturated sandy seabed under random [J]. Engineering Mechanics, 2018, 35(6): 240 − 248, 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.02.0157 [7] YAMADA S, NODA T, NAKANO M, et al. Combined-loading elastoplastic constitutive model for a unified description of the mechanical behavior of the soil skeleton [J]. Comput Geotech, 2022, 141: 104521. [8] ELGHORAIBY M A, PARK H, MANZARI M T. Stress-strain behavior and liquefaction strength characteristics of Ottawa F65 sand [J]. Soil Dynamics and Earthquake Engineering, 2020, 138: 106292. doi: 10.1016/j.soildyn.2020.106292 [9] 张建民, 王刚. 砂土液化后大变形的机理[J]. 岩土工程学报, 2006, 28(7): 835 − 840. doi: 10.3321/j.issn:1000-4548.2006.07.006ZHANG Jianmin, WANG Gang. Mechanism of large post-liquefaction deformation in saturated sand [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 835 − 840. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.07.006 [10] 赵丁凤, 梁珂, 陈国兴, 等. 剪切-体积应变耦合的孔压增量模型试验[J]. 岩土力学, 2019, 40(5): 1832 − 1840.ZHAO Dingfeng, LIANG Ke, CHEN Guoxing, et al. Experimental investigation on a new incremental excess pore pressure model characterized by cyclic shear-volume coupling [J]. Rock and Soil Mechanics, 2019, 40(5): 1832 − 1840. (in Chinese) [11] TOWHATA I, VARGAS M W, ORENSE R P, et al. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil [J]. Soil Dynamics and Earthquake Engineering, 1999, 18(5): 347 − 361. doi: 10.1016/S0267-7261(99)00008-1 [12] 陈育民, 刘汉龙, 周云东. 液化及液化后砂土的流动特性分析[J]. 岩土工程学报, 2006, 28(9): 1139 − 1143. doi: 10.3321/j.issn:1000-4548.2006.09.017CHEN Yumin, LIU Hanlong, ZHOU Yundong. Analysis on flow characteristics of liquefied and post-liquefied sand [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1139 − 1143. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.017 [13] 刘汉龙, 陈育民. 动扭剪试验中砂土液化后流动特性分析[J]. 岩土力学, 2009, 30(6): 1537 − 1541. doi: 10.3969/j.issn.1000-7598.2009.06.001LIU Hanlong, CHEN Yumin. Analysis of flow characteristics of dynamic torsional tests on post liquefied sand [J]. Rock and Soil Mechanics, 2009, 30(6): 1537 − 1541. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.06.001 [14] YE B, NI X, HUANG Y, et al. Unified modeling of soil behaviors before/after flow liquefaction [J]. Computers and Geotechnics, 2018, 102: 125 − 135. doi: 10.1016/j.compgeo.2018.06.011 [15] KONSTADINOU M, GEORGIANNOU V N. Prediction of pore water pressure generation leading to liquefaction under torsional cyclic loading [J]. Soils and Foundations, 2014, 54(5): 993 − 1005. doi: 10.1016/j.sandf.2014.09.010 [16] PAN H, CHEN G, LIU H, et al. Behavior of large post-liquefaction deformation in saturated Nanjing fine sand [J]. Earthquake Engineering and Engineering Vibration, 2011, 10(2): 187 − 193. doi: 10.1007/s11803-011-0057-1 [17] PAN H, CHEN G, SUN T, et al. Behaviour of large post-liquefaction deformation in saturated sand-gravel composites [J]. Journal of Central South University, 2012, 19(2): 547 − 552. doi: 10.1007/s11771-012-1038-x [18] 王星华, 周海林, 徐永胜. 饱和砂土液化应变发展过程的研究[J]. 水利学报, 2002, 21(6): 118 − 124. doi: 10.3321/j.issn:0559-9350.2002.06.021WANG Xinghua, ZHOU Hailin, XU Yongsheng. Study on strain development of saturated sand during liquefaction [J]. Journal of Hydraulic Engineering, 2002, 21(6): 118 − 124. (in Chinese) doi: 10.3321/j.issn:0559-9350.2002.06.021 [19] 王志华, 周恩全, 陈国兴, 等. 循环荷载下饱和砂土固-液相变特征[J]. 岩土工程学报, 2012, 34(9): 1604 − 1610.WANG Zhihua, ZHOU Enquan, CHEN Guoxing, et al. Characteristics of solid-liquid phase change of saturated sand under cyclic loading [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1604 − 1610. (in Chinese) [20] ZHU Z, ZHANG F, PENG Q, et al. Effect of the loading frequency on the sand liquefaction behaviour in cyclic triaxial tests [J]. Soil Dynamics and Earthquake Engineering, 2021, 147: 106779. doi: 10.1016/j.soildyn.2021.106779 [21] 陈国兴, 朱定华, 何启智. DSZ-1型动三轴试验机研制与性能试验[J]. 地震工程与工程振动, 2002, 22(6): 71 − 75. doi: 10.3969/j.issn.1000-1301.2002.06.012CHEN Guoxing, ZHU Dinghua, HE Qizhi. Development and test of DSZ-1 cyclic triaxial testing system [J]. Earthquake Engineering and Engineering Vibration, 2002, 22(6): 71 − 75. (in Chinese) doi: 10.3969/j.issn.1000-1301.2002.06.012 [22] 胡中华, 王瑞, 庄海洋, 等. 饱和南京砂液化后循环加载的动力表观黏度分析[J]. 岩土工程学报, 2016, 38(增刊 2): 149 − 154.HU Zhonghua, WANG Rui, ZHUANG Haiyang, et al. Apparent kinetic viscosity of saturated Nanjing sand due to liquefaction-induced large deformation in torsional shear tests [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(Suppl 2): 149 − 154. (in Chinese) [23] SEED H B, MARTIN P P, LYSMER J. Pore-water pressure changes during soil liquefaction [J]. Journal of the Geotechnical Engineering Division, 1976, 102(4): 323 − 346. doi: 10.1061/AJGEB6.0000258 [24] MARTIN G R, SEED H B, FINN W D L. Fundamentals of liquefaction under cyclic loading [J]. Journal of the Geotechnical Engineering Division, 1975, 101(5): 423 − 438. doi: 10.1061/AJGEB6.0000164 [25] CHANG W, RATHJE E M, II K H S. In situ pore-pressure generation behavior of liquefiable sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8): 921 − 931. doi: 10.1061/(ASCE)1090-0241(2007)133:8(921) [26] NI X, YE B, YE G, et al. Unique determination of cyclic instability state in flow liquefaction of sand [J]. Mar Georesources Geotechnol, 2020, 39: 1 − 9. [27] LASHKARI A, YAGHTIN M S. Sand flow liquefaction instability under shear–volume coupled strain paths [J]. Geotechnique, 2018, 68: 1002 − 1024. doi: 10.1680/jgeot.17.P.164 [28] 魏重洁, 陈育民, 张鑫磊. 低应力流动砂土与圆桩相互作用机理试验研究[J]. 中国矿业大学学报, 2020, 49(3): 499 − 505.WEI Zhongjie, CHEN Yumin, ZHANG Xinlei. Experimental study of the interaction mechanism of flowing sand and circular pile under lowstress [J]. Journal of China University of Mining & Technology, 2020, 49(3): 499 − 505. (in Chinese) [29] 王志华, 吕丛, 许振巍, 等. 循环荷载下饱和砂土的孔压触变性[J]. 岩土工程学报, 2014, 36(10): 1831 − 1837. doi: 10.11779/CJGE201410010WANG Zhihua, LYU Cong, XU Zhenwei, et al. Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831 − 1837. (in Chinese) doi: 10.11779/CJGE201410010 [30] WANG Z, MA J, GAO H, et al. Unified thixotropic fluid model for soil liquefaction [J]. Géotechnique, 2020, 70(10): 849 − 862. [31] 周恩全, 王志华, 吕丛. 饱和南京细砂流动特性的振动台试验研究[J]. 岩土工程学报, 2013, 35(增刊 2): 101 − 106.ZHOU Enquan, WANG Zhihua, LYU Cong. Shaking table tests on fluid characteristics of saturated Nanjing fine sand [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Suppl 2): 101 − 106. (in Chinese) [32] NEMAT-NASSER S, SHOKOOH A. A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing [J]. Canadian Geotechnical Journal, 1979, 16(4): 659 − 678. doi: 10.1139/t79-076 -