留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环荷载作用下饱和砂土的性质演化规律及液化阶段性特征

张鑫磊 衣睿博 纪展鹏 高洪梅 王志华

张鑫磊, 衣睿博, 纪展鹏, 高洪梅, 王志华. 循环荷载作用下饱和砂土的性质演化规律及液化阶段性特征[J]. 工程力学, 2023, 40(2): 157-167. doi: 10.6052/j.issn.1000-4750.2021.08.0648
引用本文: 张鑫磊, 衣睿博, 纪展鹏, 高洪梅, 王志华. 循环荷载作用下饱和砂土的性质演化规律及液化阶段性特征[J]. 工程力学, 2023, 40(2): 157-167. doi: 10.6052/j.issn.1000-4750.2021.08.0648
ZHANG Xin-lei, YI Rui-bo, JI Zhan-peng, GAO Hong-mei, WANG Zhi-hua. PROPERTY EVOLUTION AND LIQUEFACTION STAGE CHARACTERISTICS OF SATURATED SAND UNDER CYCLIC LOADING[J]. Engineering Mechanics, 2023, 40(2): 157-167. doi: 10.6052/j.issn.1000-4750.2021.08.0648
Citation: ZHANG Xin-lei, YI Rui-bo, JI Zhan-peng, GAO Hong-mei, WANG Zhi-hua. PROPERTY EVOLUTION AND LIQUEFACTION STAGE CHARACTERISTICS OF SATURATED SAND UNDER CYCLIC LOADING[J]. Engineering Mechanics, 2023, 40(2): 157-167. doi: 10.6052/j.issn.1000-4750.2021.08.0648

循环荷载作用下饱和砂土的性质演化规律及液化阶段性特征

doi: 10.6052/j.issn.1000-4750.2021.08.0648
基金项目: 国家自然科学基金面上项目(51678300,52178336,52108324);江苏省高等学校自然科学研究重大项目(18KJA560002);江苏高校“青蓝工程”中青年学术带头人项目;国家级大学生创新创业训练计划项目(202110291001Z)
详细信息
    作者简介:

    张鑫磊(1988−),男,江苏人,博士,主要从事地基处理及土动力学研究(E-mail: zxl201409@163.com)

    衣睿博(1997−),男,黑龙江人,硕士,主要从事岩土工程数值模拟和土动力学研究(E-mail: yiruibo97@163.com)

    纪展鹏(1998−),男,河南人,学士,主要从事城市地下空间开发的科研工作研究(E-mail: zhanpeng18@126.com)

    高洪梅(1982−),女,山东人,教授,博士,副院长,主要从事岩土动力学与地基处理方面的研究和教学工作研究(E-mail: hongmei54@163.com)

    通讯作者:

    王志华(1976−),男,江西人,教授,博士,硕导,主要从事土力学和地震工程相关的教学与科研工作研究(E-mail: wzhnjut@163.com)

  • 中图分类号: TU441

PROPERTY EVOLUTION AND LIQUEFACTION STAGE CHARACTERISTICS OF SATURATED SAND UNDER CYCLIC LOADING

  • 摘要: 正确认识饱和砂土在液化过程中的性质演变规律是解决可液化土层大变形问题的关键。通过饱和砂土不排水三轴试验,研究了饱和砂土液化过程中剪应力-剪应变关系、孔压增长速率和流动性的演化规律。发现饱和砂土由固态向液态的转变过程存在显著的阶段性特征,饱和砂土的液化过程可根据孔压比增长速率特征点划分为固态、固-液过渡、触变性流体及稳定流体四个阶段,而土体的孔压比增长速率与其产生的残余剪应变相关;围压和循环应力比会影响土体液化过程中各阶段的持续时间,围压越低、循环应力比越高,饱和砂土越容易从固体阶段转变为流体阶段;饱和南京细砂从一个阶段进入另一个阶段的所需振次与对应的孔压比之间呈线性关系。
  • 图  1  南京细砂的颗粒级配

    Figure  1.  Particle gradation of Nanjing fine sand

    图  2  $ {\overline \kappa _N} $的物理意义

    Figure  2.  Physical meaning of $ {\overline \kappa _N} $

    图  3  孔压比与流动曲线

    Figure  3.  Pore water pressure ratio and flow curve

    图  4  剪应力-剪应变关系曲线

    Figure  4.  The shear stress-shear strain curves

    图  5  剪应变与孔压比关系曲线

    Figure  5.  The relationship between shear strain and pore pressure ratio

    图  6  孔压增长速率、单周残余剪应变及累计残余剪应变的关系

    注:①—第1阶段;②—第2阶段; ③—第3阶段;④—第4阶段

    Figure  6.  The relationship between pore pressure growth rate, cyclic residual shear strain and cumulative residual shear strain

    图  7  剪应力-剪应变率关系曲线

    Figure  7.  The shear stress-shear strain rate curves

    图  8  表观黏度与剪应变率随振次发展

    注:①—固态土体阶段;②—固液相变阶段;   ③—触变性流体阶段;④—稳定性流体阶段

    Figure  8.  The development of apparent viscosity and shear strain rate

    图  9  各工况液化前阶段性划分

    注:①—固态土体阶段;②—固-液过渡阶段;③—触变性流体阶段

    Figure  9.  Stage division of different cases before liquefaction

    图  10  孔压比增长速率与归一化振次的关系

    Figure  10.  Relationship between excess pore pressure ratio growth rate and normalized cycles

    图  11  循环应力比和有效围压对阶段临界点及对应孔压比的影响

    Figure  11.  Influence of cyclic stress ratio and effective confining pressure on stage critical point and corresponding pore pressure ratio

    图  12  阶段临界点振次与孔压比的关系

    Figure  12.  Relationship between critical cycles and pore water pressure ratio

    表  1  试验工况

    Table  1.   Test conditions

    工况围压
    $ \sigma _{ {\rm{c} }}' /{\rm{kPa} } $
    循环应力比
    CSR
    工况围压
    $ \sigma _{ {\rm{c} }}' /{\rm{kPa} } $
    循环应力比
    CSR
    T1500.18T41000.21
    T21000.15T51500.18
    T31000.18T61500.21
    下载: 导出CSV
  • [1] 邹佑学, 王睿, 张建民. 碎石桩加固可液化场地数值模拟与分析[J]. 工程力学, 2019, 36(10): 152 − 163. doi: 10.6052/j.issn.1000-4750.2018.10.0559

    ZOU Youxue, WANG Rui, ZHANG Jianmin. Numerical investigation on liquefaction mitigation of liquefiable soil improved by stone columns [J]. Engineering Mechanics, 2019, 36(10): 152 − 163. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.10.0559
    [2] 曹振中, 袁晓铭, 陈龙伟, 等. 汶川大地震液化宏观现象概述[J]. 岩土工程学报, 2010, 32(4): 645 − 650.

    CAO Zhenzhong, YUAN Xiaoming, CHEN Longwei, et al. Summary of liquefaction macrophenomena in Wenchuan Earthquake [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 645 − 650. (in Chinese)
    [3] 徐丹, 杜春波, 王涛, 等. 可液化场地高桩桥梁振动台模型试验研究[J]. 工程力学, 2020, 37(增刊): 168 − 171. doi: 10.6052/j.issn.1000-4750.2019.05.S031

    XU Dan, DU Chunbo, WANG Tao, et al. Shaking table test on elevated pile bridges in liquefiable ground [J]. Engineering Mechanics, 2020, 37(Suppl): 168 − 171. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.S031
    [4] YANG Z X, PAN K. Flow deformation and cyclic resistance of saturated loose sand considering initial static shear effect [J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 68 − 78. doi: 10.1016/j.soildyn.2016.09.002
    [5] PRIME N, DUFOUR F, DARVE F. Unified model for geomaterial solid/fluid states and the transition in between [J]. Journal of Engineering Mechanics, 2014, 140(6): 1 − 10.
    [6] 王小雯, 张建民. 随机波浪作用下饱和砂质海床弹塑性动力响应规律[J]. 工程力学, 2018, 35(6): 240 − 248, 256. doi: 10.6052/j.issn.1000-4750.2017.02.0157

    WANG Xiaowen, ZHANG Jianmin. Elastoplastic dynamic behaviors of saturated sandy seabed under random [J]. Engineering Mechanics, 2018, 35(6): 240 − 248, 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.02.0157
    [7] YAMADA S, NODA T, NAKANO M, et al. Combined-loading elastoplastic constitutive model for a unified description of the mechanical behavior of the soil skeleton [J]. Comput Geotech, 2022, 141: 104521.
    [8] ELGHORAIBY M A, PARK H, MANZARI M T. Stress-strain behavior and liquefaction strength characteristics of Ottawa F65 sand [J]. Soil Dynamics and Earthquake Engineering, 2020, 138: 106292. doi: 10.1016/j.soildyn.2020.106292
    [9] 张建民, 王刚. 砂土液化后大变形的机理[J]. 岩土工程学报, 2006, 28(7): 835 − 840. doi: 10.3321/j.issn:1000-4548.2006.07.006

    ZHANG Jianmin, WANG Gang. Mechanism of large post-liquefaction deformation in saturated sand [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 835 − 840. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.07.006
    [10] 赵丁凤, 梁珂, 陈国兴, 等. 剪切-体积应变耦合的孔压增量模型试验[J]. 岩土力学, 2019, 40(5): 1832 − 1840.

    ZHAO Dingfeng, LIANG Ke, CHEN Guoxing, et al. Experimental investigation on a new incremental excess pore pressure model characterized by cyclic shear-volume coupling [J]. Rock and Soil Mechanics, 2019, 40(5): 1832 − 1840. (in Chinese)
    [11] TOWHATA I, VARGAS M W, ORENSE R P, et al. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil [J]. Soil Dynamics and Earthquake Engineering, 1999, 18(5): 347 − 361. doi: 10.1016/S0267-7261(99)00008-1
    [12] 陈育民, 刘汉龙, 周云东. 液化及液化后砂土的流动特性分析[J]. 岩土工程学报, 2006, 28(9): 1139 − 1143. doi: 10.3321/j.issn:1000-4548.2006.09.017

    CHEN Yumin, LIU Hanlong, ZHOU Yundong. Analysis on flow characteristics of liquefied and post-liquefied sand [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1139 − 1143. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.017
    [13] 刘汉龙, 陈育民. 动扭剪试验中砂土液化后流动特性分析[J]. 岩土力学, 2009, 30(6): 1537 − 1541. doi: 10.3969/j.issn.1000-7598.2009.06.001

    LIU Hanlong, CHEN Yumin. Analysis of flow characteristics of dynamic torsional tests on post liquefied sand [J]. Rock and Soil Mechanics, 2009, 30(6): 1537 − 1541. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.06.001
    [14] YE B, NI X, HUANG Y, et al. Unified modeling of soil behaviors before/after flow liquefaction [J]. Computers and Geotechnics, 2018, 102: 125 − 135. doi: 10.1016/j.compgeo.2018.06.011
    [15] KONSTADINOU M, GEORGIANNOU V N. Prediction of pore water pressure generation leading to liquefaction under torsional cyclic loading [J]. Soils and Foundations, 2014, 54(5): 993 − 1005. doi: 10.1016/j.sandf.2014.09.010
    [16] PAN H, CHEN G, LIU H, et al. Behavior of large post-liquefaction deformation in saturated Nanjing fine sand [J]. Earthquake Engineering and Engineering Vibration, 2011, 10(2): 187 − 193. doi: 10.1007/s11803-011-0057-1
    [17] PAN H, CHEN G, SUN T, et al. Behaviour of large post-liquefaction deformation in saturated sand-gravel composites [J]. Journal of Central South University, 2012, 19(2): 547 − 552. doi: 10.1007/s11771-012-1038-x
    [18] 王星华, 周海林, 徐永胜. 饱和砂土液化应变发展过程的研究[J]. 水利学报, 2002, 21(6): 118 − 124. doi: 10.3321/j.issn:0559-9350.2002.06.021

    WANG Xinghua, ZHOU Hailin, XU Yongsheng. Study on strain development of saturated sand during liquefaction [J]. Journal of Hydraulic Engineering, 2002, 21(6): 118 − 124. (in Chinese) doi: 10.3321/j.issn:0559-9350.2002.06.021
    [19] 王志华, 周恩全, 陈国兴, 等. 循环荷载下饱和砂土固-液相变特征[J]. 岩土工程学报, 2012, 34(9): 1604 − 1610.

    WANG Zhihua, ZHOU Enquan, CHEN Guoxing, et al. Characteristics of solid-liquid phase change of saturated sand under cyclic loading [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1604 − 1610. (in Chinese)
    [20] ZHU Z, ZHANG F, PENG Q, et al. Effect of the loading frequency on the sand liquefaction behaviour in cyclic triaxial tests [J]. Soil Dynamics and Earthquake Engineering, 2021, 147: 106779. doi: 10.1016/j.soildyn.2021.106779
    [21] 陈国兴, 朱定华, 何启智. DSZ-1型动三轴试验机研制与性能试验[J]. 地震工程与工程振动, 2002, 22(6): 71 − 75. doi: 10.3969/j.issn.1000-1301.2002.06.012

    CHEN Guoxing, ZHU Dinghua, HE Qizhi. Development and test of DSZ-1 cyclic triaxial testing system [J]. Earthquake Engineering and Engineering Vibration, 2002, 22(6): 71 − 75. (in Chinese) doi: 10.3969/j.issn.1000-1301.2002.06.012
    [22] 胡中华, 王瑞, 庄海洋, 等. 饱和南京砂液化后循环加载的动力表观黏度分析[J]. 岩土工程学报, 2016, 38(增刊 2): 149 − 154.

    HU Zhonghua, WANG Rui, ZHUANG Haiyang, et al. Apparent kinetic viscosity of saturated Nanjing sand due to liquefaction-induced large deformation in torsional shear tests [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(Suppl 2): 149 − 154. (in Chinese)
    [23] SEED H B, MARTIN P P, LYSMER J. Pore-water pressure changes during soil liquefaction [J]. Journal of the Geotechnical Engineering Division, 1976, 102(4): 323 − 346. doi: 10.1061/AJGEB6.0000258
    [24] MARTIN G R, SEED H B, FINN W D L. Fundamentals of liquefaction under cyclic loading [J]. Journal of the Geotechnical Engineering Division, 1975, 101(5): 423 − 438. doi: 10.1061/AJGEB6.0000164
    [25] CHANG W, RATHJE E M, II K H S. In situ pore-pressure generation behavior of liquefiable sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8): 921 − 931. doi: 10.1061/(ASCE)1090-0241(2007)133:8(921)
    [26] NI X, YE B, YE G, et al. Unique determination of cyclic instability state in flow liquefaction of sand [J]. Mar Georesources Geotechnol, 2020, 39: 1 − 9.
    [27] LASHKARI A, YAGHTIN M S. Sand flow liquefaction instability under shear–volume coupled strain paths [J]. Geotechnique, 2018, 68: 1002 − 1024. doi: 10.1680/jgeot.17.P.164
    [28] 魏重洁, 陈育民, 张鑫磊. 低应力流动砂土与圆桩相互作用机理试验研究[J]. 中国矿业大学学报, 2020, 49(3): 499 − 505.

    WEI Zhongjie, CHEN Yumin, ZHANG Xinlei. Experimental study of the interaction mechanism of flowing sand and circular pile under lowstress [J]. Journal of China University of Mining & Technology, 2020, 49(3): 499 − 505. (in Chinese)
    [29] 王志华, 吕丛, 许振巍, 等. 循环荷载下饱和砂土的孔压触变性[J]. 岩土工程学报, 2014, 36(10): 1831 − 1837. doi: 10.11779/CJGE201410010

    WANG Zhihua, LYU Cong, XU Zhenwei, et al. Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831 − 1837. (in Chinese) doi: 10.11779/CJGE201410010
    [30] WANG Z, MA J, GAO H, et al. Unified thixotropic fluid model for soil liquefaction [J]. Géotechnique, 2020, 70(10): 849 − 862.
    [31] 周恩全, 王志华, 吕丛. 饱和南京细砂流动特性的振动台试验研究[J]. 岩土工程学报, 2013, 35(增刊 2): 101 − 106.

    ZHOU Enquan, WANG Zhihua, LYU Cong. Shaking table tests on fluid characteristics of saturated Nanjing fine sand [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Suppl 2): 101 − 106. (in Chinese)
    [32] NEMAT-NASSER S, SHOKOOH A. A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing [J]. Canadian Geotechnical Journal, 1979, 16(4): 659 − 678. doi: 10.1139/t79-076
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  85
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 修回日期:  2021-11-29
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回