留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GFRP管−灌浆料修复锈蚀钢管节点受压性能研究

常鸿飞 高宇航 左文康 李照伟 严晓宇

常鸿飞, 高宇航, 左文康, 李照伟, 严晓宇. GFRP管−灌浆料修复锈蚀钢管节点受压性能研究[J]. 工程力学, 2023, 40(2): 145-156. doi: 10.6052/j.issn.1000-4750.2021.08.0644
引用本文: 常鸿飞, 高宇航, 左文康, 李照伟, 严晓宇. GFRP管−灌浆料修复锈蚀钢管节点受压性能研究[J]. 工程力学, 2023, 40(2): 145-156. doi: 10.6052/j.issn.1000-4750.2021.08.0644
CHANG Hong-fei, GAO Yu-hang, ZUO Wen-kang, LI Zhao-wei, YAN Xiao-yu. COMPRESSIVE PERFORMANCE STUDY OF GROUT-FILLED GFRP TUBE REPAIRING CORRODED JOINTS[J]. Engineering Mechanics, 2023, 40(2): 145-156. doi: 10.6052/j.issn.1000-4750.2021.08.0644
Citation: CHANG Hong-fei, GAO Yu-hang, ZUO Wen-kang, LI Zhao-wei, YAN Xiao-yu. COMPRESSIVE PERFORMANCE STUDY OF GROUT-FILLED GFRP TUBE REPAIRING CORRODED JOINTS[J]. Engineering Mechanics, 2023, 40(2): 145-156. doi: 10.6052/j.issn.1000-4750.2021.08.0644

GFRP管−灌浆料修复锈蚀钢管节点受压性能研究

doi: 10.6052/j.issn.1000-4750.2021.08.0644
基金项目: 国家自然科学基金项目(51408596,51978657);中央高校基本业务费项目(2021ZDPY0209);徐州市重点研发计划项目(KC19199)
详细信息
    作者简介:

    常鸿飞(1982−),男,河南信阳人,教授,博士,博导,主要从事钢结构加固修复研究(E-mail: honfee@126.com)

    高宇航(1998−),男,河北张家口人,硕士生,主要从事FRP组合结构研究(E-mail: 345387379@qq.com)

    李照伟(1996−),男,山东日照人,博士生,主要从事钢结构加固修复研究(E-mail: lzw1024913@163.com)

    严晓宇(1999−),男,湖北荆州人,本科生,主要从事FRP组合结构研究(E-mail: 759360786@qq.com)

    通讯作者:

    左文康(1995−),男,江苏盐城人,博士生,主要从事钢结构加固修复与FRP组合结构研究(E-mail: zuowk@outlook.com)

  • 中图分类号: TU391;TU317+.1

COMPRESSIVE PERFORMANCE STUDY OF GROUT-FILLED GFRP TUBE REPAIRING CORRODED JOINTS

  • 摘要: 圆钢管焊接节点应用广泛,长期服役后的腐蚀退化问题严重影响其安全性和剩余寿命。为研究GFRP管-灌浆料修复锈蚀钢管节点的效果,对6组未锈蚀、锈蚀未修复和GFRP管-灌浆料修复的锈蚀圆钢管T形节点开展了支管轴压力静载试验。试验结果表明:主管锈蚀导致的约10%重量损失会使节点承载力降低近20%;GFRP管-灌浆料有效地约束了锈蚀主管的侧向外凸变形,使节点的控制破坏模式由主管塑性化转变为主管冲剪,从而使锈蚀节点的受压承载力和初始刚度分别提升约100%和50%,且均高于未锈蚀的对比试件。基于验证的精细化有限元模型,进一步参数分析表明,支主管直径比、GFRP管厚度以及修复主管截面空心率是影响修复节点受压性能的关键参数,主管修复长度和灌浆料强度的影响较小;优化修复构造,可使主管重量损失28%的锈蚀节点承载力提升至锈蚀前的1.5倍以上。最后,基于修复节点承载力达到1.2倍未锈节点的目标,提出了适用于不同节点锈蚀率的修复建议,可为长期服役后锈蚀钢管结构的修复与性能提升提供参考。
  • 图  1  节点形式

    Figure  1.  Joint details

    图  2  试验装置

    Figure  2.  Experimental setup

    图  3  典型破坏模式

    注:EX表示实验结果;FE表示模拟结果

    Figure  3.  Typical failure modes

    图  4  荷载-变形曲线

    Figure  4.  Load-deformation curves

    图  5  有限元模型

    注:fy为钢材屈服强度;ԑy为钢材屈服应变;fu为钢材极限强度, ԑu为钢材极限应变;Es为钢材弹性模量;Ec为灌浆料弹性模量;εc0fc分别为灌浆料受压峰值应变和应力;εt0ft分别为灌浆料受拉峰值应变和应力;εc,e1εc,in分别为灌浆料受压弹性和非弹性应变

    Figure  5.  FE models

    图  6  支主管直径比与主管重量损失率的影响

    注:UU为未锈蚀节点;UC为锈蚀未修复节点;GC为GFRP管-灌浆料修复锈蚀节点

    Figure  6.  Influence of the brace to chord diameter ratio and the chord weight loss ratio

    图  7  GFRP外管厚度的影响

    Figure  7.  Influence of the thickness of GFRP tube

    图  8  修复主管截面空心率的影响

    Figure  8.  Influence of the repaired chord section hollow ratio

    图  9  灌浆料夹层强度的影响

    Figure  9.  Influence of thickness of grout sandwich

    图  10  修复长度的影响

    Figure  10.  Influence of repaired length

    表  1  试件信息

    Table  1.   Details of specimens

    试件d0/mmt0/mmL0/mmd1/mmt1/mmL1/mmd2/mmt2/mmL2/mmΔ/(%)β2γ
    UU0.5150.006.00750.0075.005.00325.00750.000.00.525.00
    UC0.5148.845.4275.0010.00.527.46
    GC0.5148.705.3575.00200.005.0011.20.527.79
    UU0.8150.006.00120.00 0.00.825.00
    UC0.8148.725.36120.0011.10.827.75
    GC0.8148.725.36120.00200.005.0011.10.827.75
    注:试件标签“UU”为未锈蚀节点;“UC”为锈蚀未修复节点;“GC”为GFRP管-灌浆料修复锈蚀节点;“0.5”和“0.8”分别为支主管直径比为0.5和0.8的节点;无量纲参数Δ表示根据实测平均厚度算得的主管重量损失率;β为支主管直径比;2γ为主管径厚比。
    下载: 导出CSV

    表  2  极限承载力与初始刚度

    Table  2.   Ultimate strength and initial stiffness

    试件Pr, EX/kNK/(kN/mm)Pr, FE/kNPr, EX/Pr, FE
    UU0.515538.51620.957
    UC0.512932.81410.915
    GC0.526549.82601.019
    UU0.823458.92171.078
    UC0.819050.01841.033
    GC0.840369.73911.031
    注:Pr, EXPr, FE分别为实测和有限元模拟的节点极限承载力;K为节点实测初始刚度。
    下载: 导出CSV

    表  3  数值模型信息

    Table  3.   Detail of numerical models

    分组类型βΔ/(%)τφfcuλNFE
    G1UU0.4077.0
    UC0.41460.6
    UC0.42845.9
    UU0.60110.0
    UC0.61487.5
    UC0.62866.9
    UU0.80145.9
    UC0.814115.7
    UC0.82888.0
    GC0.4141.00.750803116.4
    GC0.4281.00.750803100.9
    GC0.6141.00.750803175.3
    GC0.6281.00.750803156.7
    GC0.8141.00.750803235.9
    GC0.8281.00.750803212.0
    G2GC0.4140.20.75080391.6
    GC0.4140.60.750803106.4
    GC0.4141.40.750803119.5
    GC0.4280.20.75080377.6
    G2GC0.4280.60.75080393.7
    GC0.4281.40.750803105.0
    GC0.6140.20.750803126.1
    GC0.6140.60.750803157.1
    GC0.6141.40.750803180.7
    GC0.6280.20.750803109.0
    GC0.6280.60.750803139.2
    GC0.6281.40.750803162.3
    GC0.8140.20.750803158.4
    GC0.8140.60.750803202.2
    GC0.8141.40.750803250.7
    GC0.8280.20.750803139.1
    GC0.8280.60.750803184.6
    GC0.8281.40.750803231.0
    G3GC0.4141.00.833803105.0
    GC0.4141.00.833803118.3
    GC0.4281.00.66780391.2
    GC0.4281.00.667803101.7
    GC0.6141.00.833803152.5
    GC0.6141.00.833803180.1
    GC0.6281.00.667803138.0
    GC0.6281.00.667803160.6
    GC0.8141.00.833803193.2
    GC0.8141.00.833803250.2
    GC0.8281.00.667803177.5
    GC0.8281.00.667803230.0
    G4GC0.4141.00.750403111.3
    GC0.4141.00.7501203118.3
    GC0.4281.00.75040396.8
    GC0.4281.00.7501203102.5
    GC0.6141.00.750403161.3
    GC0.6141.00.7501203178.0
    GC0.6281.00.750403144.9
    GC0.6281.00.7501203158.2
    GC0.8141.00.750403205.7
    GC0.8141.00.7501203242.9
    GC0.8281.00.750403190.8
    GC0.8281.00.7501203221.6
    G5GC0.4141.00.750802110.7
    GC0.4141.00.750804119.2
    GC0.4281.00.75080295.3
    GC0.4281.00.750804104.5
    GC0.6141.00.750802157.0
    GC0.6141.00.750804180.0
    GC0.6281.00.750802141.4
    GC0.6281.00.750804160.9
    GC0.8141.00.750802190.5
    GC0.8141.00.750804244.6
    GC0.8281.00.750802175.4
    GC0.8281.00.750804226.1
    注:β为支主管直径比,β=d1/d0d0为主管直径,d1为支管直径;Δ为主管锈蚀率;τ为GFRP外管与未锈蚀主管厚度比,τ=t2/t0, UUt0, UU为未锈蚀主管厚度,t2为GFRP管厚度;φ为修复主管截面空心率,为主管外径与GFRP管内径之比,φ=d0/(d2−2t2),d2为GFRP管外径;fcu/MPa为灌浆料立方体抗压强度;λ为修复长度与主管外径之比,λ=L2/d0L2为GFRP管长度;NFE/kN为模拟所得的极限承载力。
    下载: 导出CSV
  • [1] 陈以一, 王伟, 周锋. 钢管结构——新需求驱动的形式拓展和性能提升[J]. 建筑结构学报, 2019, 40(3): 1 − 20.

    CHEN Yiyi, WANG Wei, ZHOU Feng. Steel tubular structures: Configuration innovation and performance improvement driven by new requirements [J]. Journal of Building Structures, 2019, 40(3): 1 − 20. (in Chinese)
    [2] 聂建国. 钢-混凝土组合结构在海洋工程中的应用研究(英文)[J]. 钢结构(中英文), 2020, 35(1): 20 − 33.

    NIE Jianguo. Application of steel-concrete composite structure in ocean engineering [J]. Steel Construction, 2020, 35(1): 20 − 33. (in Chinese)
    [3] CHANG H F, ZUO W K, XIA J W, et al. Sensitivity analysis of geometrical design parameters on the compressive strength of the vertical inner-plate reinforced square hollow section t-joints: A finite element study [J]. Engineering Structures, 2020, 208: 110308. doi: 10.1016/j.engstruct.2020.110308
    [4] 潘毅, 仵振, 周祎, 等. 高强钢焊接箱形柱受力性能研究: (Ⅰ)残余应力统一分布模型 [J/OL]. 建筑结构学报, https://doi.org/10.14006/j.jzjgxb.2020.0514.

    PAN Yi, WU Zhen, ZHOU Yi, et al. Research on mechanical properties of high strength steel welded box columns: (Ⅰ) Unified model of residual stress [J/OL]. Journal of Building Structures, https://doi.org/10.14006/j.jzjgxb.2020.0514. (in Chinese)
    [5] 赵中伟, 吴刚. 锈蚀焊接空心球节点随机抗压承载力研究[J]. 工程力学, 2021, 38(5): 219 − 228, 238. doi: 10.6052/j.issn.1000-4750.2020.07.0472

    ZHAO Zhongwei, WU Gang. Random compression capacity of corroded WHSJS [J]. Engineering Mechanics, 2021, 38(5): 219 − 228, 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0472
    [6] 吴智深, 汪昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5): 1 − 14. doi: 10.6052/j.issn.1000-4750.2019.07.ST10

    WU Zhishen, WANG Xin, SHI Jianzhe. Advancement of basalt fiber-reinforced polymers (BFRPs) and the novel structures reinforced with BFRPs [J]. Engineering Mechanics, 2020, 37(5): 1 − 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.ST10
    [7] 王宇航, 王雨嫣, 胡少伟. 海洋结构CFRP环向约束钢管混凝土柱在压弯扭荷载下的力学性能研究[J]. 工程力学, 2019, 36(8): 96 − 105. doi: 10.6052/j.issn.1000-4750.2018.07.0377

    WANG Yuhang, WANG Yuyan, HU Shaowei. Study on the mechanical properties of CFRP circumferentially confined concrete filled steel tube column of marine structure under compression-bending-torsion combined load [J]. Engineering Mechanics, 2019, 36(8): 96 − 105. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0377
    [8] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3): 24 − 36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures [J]. China Civil Engineering Journal, 2006, 39(3): 24 − 36. (in Chinese) doi: 10.3321/j.issn:1000-131X.2006.03.004
    [9] ZHAO X L, ZHANG L. State-of-the-art review on frp strengthened steel structures [J]. Engineering Structures, 2007, 29(8): 1808 − 1823. doi: 10.1016/j.engstruct.2006.10.006
    [10] FU Y G, TONG L W, HE L, et al. Experimental and numerical investigation on behavior of CFRP-strengthened circular hollow section gap K-joints [J]. Thin-Walled Structures, 2016, 102: 80 − 97. doi: 10.1016/j.tws.2016.01.020
    [11] XU G W, TONG L W, ZHAO X L, et al. Numerical analysis and formulae for SCF reduction coefficients of CFRP-strengthened CHS gap K-joints [J]. Engineering Structures, 2020, 210: 110369. doi: 10.1016/j.engstruct.2020.110369
    [12] TENG J G, YU T, WONG Y L, et al. Hybrid FRP-concrete-steel tubular columns: Concept and behavior [J]. Construction and Building Materials, 2007, 21(4): 846 − 854. doi: 10.1016/j.conbuildmat.2006.06.017
    [13] YU T, TENG J G, LAM E S, et al. Flexural behavior of hybrid FRP-concrete-steel double-skin tubular members [J]. Journal of Composites for Construction, 2006, 10(5): 443 − 452. doi: 10.1061/(ASCE)1090-0268(2006)10:5(443)
    [14] ZHANG B, YU T, TENG J G. Behavior and modelling of FRP-concrete-steel hybrid double-skin tubular columns under repeated unloading/reloading cycles [J]. Composite Structures, 2021, 258: 113393. doi: 10.1016/j.compstruct.2020.113393
    [15] ZENG L, LI L, XIAO P, et al. Experimental study of seismic performance of full-scale basalt FRP-recycled aggregate concrete-steel tubular columns [J]. Thin-Walled Structures, 2020, 151: 106185. doi: 10.1016/j.tws.2019.106185
    [16] DE WAAL L, JIANG S, TORRES J, et al. Design and construction of a hybrid double-skin tubular arch bridge [C]. 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE), PARIS: 2018, 7: 17 − 19.
    [17] 左文康, 常鸿飞, 李照伟, 等. GFRP 管夹层灌浆修复锈蚀圆钢管 T 形节点受压性能研究 [J/OL]. 建筑结构学报, https://doi.org/10.14006/j.jzjgxb.2021.0013.

    ZUO Wenkang, CHANG Hongfei, LI Zhaowei , et al. Investigation on compressive behavior of grout-filled GFRP tube repairing corroded CHS T-joint [J/OL]. Journal of Building Structures, https://doi.org/10.14006/j.jzjgxb.2021.0013. (in Chinese)
    [18] 马昕煦, 陈以一. 支方主圆T形相贯节点轴压承载力计算公式[J]. 工程力学, 2017, 34(5): 163 − 170. doi: 10.6052/j.issn.1000-4750.2015.12.0965

    MA Xinxu, CHEN Yiyi. Ultimate strength formulae for RHS-CHS T-joints under axial compression [J]. Engineering Mechanics, 2017, 34(5): 163 − 170. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.12.0965
    [19] HOU C, HAN L H, ZHAO X L. Concrete-filled circular steel tubes subjected to local bearing force: Experiments [J]. Journal of Constructional Steel Research, 2013, 83: 90 − 104. doi: 10.1016/j.jcsr.2013.01.008
    [20] CHOO Y S, VAN DER VEGTE G J, ZETTLEMOYER N, et al. Static strength of T-joints reinforced with doubler or collar plates. I: Experimental investigations [J]. Journal of Structural Engineering, 2005, 131(1): 119 − 128. doi: 10.1061/(ASCE)0733-9445(2005)131:1(119)
    [21] 常鸿飞, 左文康, 任腾龙, 等. 表面焊板加强方钢管T形节点的受压性能[J]. 华南理工大学学报(自然科学版), 2019, 47(11): 113 − 121.

    CHANG Hongfei, ZUO Wenkang, REN Tenglong, et al. Compressive behavior of plate-reinforced square hollow section T-joints [J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(11): 113 − 121. (in Chinese)
    [22] 常鸿飞, 李照伟, 钱玉龙, 等. 方钢管柱-H型钢梁槽钢连接节点受弯性能试验研究及有限元参数分析[J]. 建筑结构学报, 2021, 42(2): 92 − 102.

    CHANG Hongfei, LI Zhaowei, QIAN Yulong, et al. Experimental and parametric study on flexural performance of transverse reverse channel connections between square hollow section column and H-beam [J]. Journal of Building Structures, 2021, 42(2): 92 − 102. (in Chinese)
    [23] CHANG H F, ZUO W K, YANG J C, et al. Compressive strength of collar plate reinforced SHS T-joints: Effect of geometrical parameters and chord stress ratio [J]. Journal of Constructional Steel Research, 2020, 174: 106278.
    [24] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59 − 67, 82. doi: 10.6052/j.issn.1000-4750.2011.07.0420

    NIE Jianguo, WANG Yuhang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures [J]. Engineering Mechanics, 2013, 30(4): 59 − 67, 82. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.07.0420
    [25] HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329 − 334.
    [26] 王庆凡, 曲慧, 李伟, 等. 内置加劲环K型管节点抗冲击性能研究[J]. 工程力学, 2022, 39(5): 133 − 144. doi: 10.6052/j.issn.1000-4750.2021.02.0151

    WANG Qingfan, QU Hui, LI Wei, et al. Study on impact performance of K-type tubular joints with stiffening inner rings [J]. Engineering Mechanics, 2022, 39(5): 133 − 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0151
    [27] CHANG H F, XIA J W, GUO Z, et al. Experimental study on the axial compressive strength of vertical inner plate reinforced square hollow section T-joints [J]. Engineering Mechanics, 2018, 172: 131 − 140.
    [28] HUANG F H, CHENG B, DUAN Y H, et al. Stress concentrations and fatigue behavior of bird-beak SHS overlap K-joints subjected to brace in-plane force [J]. Thin-Walled Structures, 2021, 161: 107446. doi: 10.1016/j.tws.2021.107446
    [29] HUANG F H, CHENG B, LI C, et al. Fatigue behavior of bird-beak SHS X-joints under cyclic brace axial forces [J]. Journal of Constructional Steel Research, 2020, 169: 106021. doi: 10.1016/j.jcsr.2020.106021
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  71
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19
  • 录用日期:  2021-12-10
  • 修回日期:  2021-11-10
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回