DEEP LEARNING METHOD FOR FLOW FEATURE RECOGNITION BASED ON DIMENSIONLESS TIME HISTORY
-
摘要: 流场的特征直接影响结构的流致振动状态,对结构绕流流场的特征分析具有重要的研究意义。在中高雷诺数与不同流速的情况下,尾流中隐含的流场特征不同,传统数学物理方法很难对其特征进行提取与识别。该文提出了采用无量纲的物理量时程进行流场特征识别的深度学习方法,消除了不同来流速度的影响,仅通过时程的时变特征进行特征识别,扩大了特征识别方法的应用范围。采用两种不同深度学习模型对三种棱柱的尾流进行了特征提取与识别,通过比较可以发现:归一化的时程中仍包含不同形状物体所引起流场的关键特征,可用于流场的特征提取;使用归一化时程进行流场特征识别可降低模型训练难度,又提高了特征提取的精度,是一种流场特征提取的新方法。Abstract: The characteristics of the flow field influence the flow-induced vibration state of structures, it thusly has a crucial significance to study the flow features around structures. However, in the case of the flow field with medium and high Reynolds numbers, the wake is highly complex, and it is not easy to extract and recognize complex features through traditional mathematical and physical methods. This paper proposes a deep learning method that uses the dimensionless time history of the flow variables to identify the flow features. The method eliminates the influence of different incoming flow speeds and only uses the time-varying features of the dimensionless time history for feature recognition, which improves the scope of the method. Two different flow time-history deep learning models are used to extract and identify the wakes of three types of prisms. Comparison results proved that unified time history maintains the critical features of wake caused by objects of different shapes. Furthermore, the unified time history can be used for the feature extraction of the flow field and improve the accuracy of the flow field feature extraction by the model. It is a feasible new method for flow field feature extraction.
-
表 1 样本的标签设置
Table 1. Label settings for samples
形状 三棱柱 方柱 六棱柱 标签 1 2 3 变量 P, U, V, W P, U, V, W P, U , V, W 表 2 算例设置
Table 2. Setup of cases
算例 模型 样本 参数 C1 MLP 原始时程 P, U, V, W C2 MLP 归一化时程 P, U, V, W C3 FCNN 原始时程 P, U, V, W C4 FCNN 归一化时程 P, U, V, W 表 3 各算例的特征提取精度
Table 3. Results of feature recognition accuracy
参数 C1 C2 精度提升率 C3 C4 精度提升率/(%) P 0.8598 0.9935 13.37 0.9841 0.9991 0.15 U 0.7361 0.9936 25.75 0.9926 0.9969 0.43 V 0.9995 0.9992 −0.03 0.9998 0.9975 −0.23 W 0.5930 0.6568 6.38 0.9652 0.9875 2.23 -
[1] 葛耀君. 大跨度桥梁抗风的技术挑战与精细化研究[J]. 工程力学, 2011(增刊 2): 11 − 23.GE Yaojun. Technical challenges and refinement research on wind resistance of long-span bridges [J]. Engineering Mechanics, 2011(Suppl 2): 11 − 23. (in Chinese) [2] 李永乐, 陈星宇, 汪斌, 等. 扁平箱梁涡激共振阻塞效应及振幅修正[J]. 工程力学, 2018, 35(11): 45 − 52. doi: 10.6052/j.issn.1000-4750.2017.07.0576LI Yongle, CHEN Xingyu, WANG Bin, et al. Blockage-effects and amplitude conversion of vortex-induced vibration for flat-box girder [J]. Engineering Mechanics, 2018, 35(11): 45 − 52. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.07.0576 [3] 刘剑寒, 马文勇. 旋转圆柱气动力特性风洞试验研究[J]. 工程力学, 2021, 38(增刊 1): 89 − 92. doi: 10.6052/j.issn.1000-4750.2020.05.S016LIU Jianhan, MA Wenyong. Wind tunnel test on aerodynamic characteristics of a rotating cylinder [J]. Engineering Mechanics, 2021, 38(Suppl 1): 89 − 92. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S016 [4] 刘庆宽, 孙一飞, 张磊杰, 等. 凹痕对斜拉桥斜拉索气动性能影响研究[J]. 工程力学, 2019, 36(增刊 1): 272 − 277. doi: 10.6052/j.issn.1000-4750.2018.05.S053LIU Qingkuan, SUN Yifei, ZHANG Leijie, et al. Study on the influence of dent on aerodynamic performance of stay cables of cable-stayed bridge [J]. Engineering Mechanics, 2019, 36(Suppl 1): 272 − 277. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.S053 [5] 叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4): 185 − 199.YE Shuran, ZHANG Zhen, WANG Yiwei, et al. Progress in deep convolutional neural network based flow field recognition and its applications [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 185 − 199. (in Chinese) [6] 王义乾, 桂南. 第三代涡识别方法及其应用综述[J]. 水动力学研究与进展, 2019, 34(4): 413 − 429.WANG Yiqian, GUI Nan. A review of the third-generation vortex identification method and its applications [J]. Chinese Journal of Hydrodynamics, 2019, 34(4): 413 − 429. (in Chinese) [7] 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413 − 431. doi: 10.7638/kqdlxxb-2020.0015LIU Chaoqun. Liutex-third generation of vortex definition and identification methods [J]. Acta Aerodynamica Sinica, 2020, 38(3): 413 − 431. (in Chinese) doi: 10.7638/kqdlxxb-2020.0015 [8] 王慧, 郭晨林, 王乐, 等. 基于内积矩阵及深度学习的结构健康监测研究[J]. 工程力学, 2022, 39(2): 14 − 22, 75. doi: 10.6052/j.issn.1000-4750.2020.12.0935WANG Hui, GUO Chenlin, WANG Le, et al. Structural health monitoring based inner product matrix and deep learning [J]. Engineering Mechanics, 2022, 39(2): 14 − 22, 75. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0935 [9] 叶继红, 杨振宇. 基于生成式对抗网络的风场生成研究[J]. 工程力学, 2021, 38(10): 1 − 11. doi: 10.6052/j.issn.1000-4750.2020.12.0885YE Jihong, YANG Zhenyu. Research on generation of wind fields based on generative countermeasure network [J]. Engineering Mechanics, 2021, 38(10): 1 − 11. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0885 [10] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance [J]. Journal of Fluid Mechanics, 2016, 807: 155 − 166. doi: 10.1017/jfm.2016.615 [11] MAULIK R, SAN O, JACOB J D, et al. Sub-grid scale model classification and blending through deep learning [J]. Journal of Fluid Mechanics, 2019, 870: 784 − 812. doi: 10.1017/jfm.2019.254 [12] REN F, WANG C, TANG H. Active control of vortex-induced vibration of a circular cylinder using machine learning [J]. Physics of Fluids, 2019, 31(9): 93601. doi: 10.1063/1.5115258 [13] HUANG J, LIU H, CAI W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning [J]. Journal of Fluid Mechanics, 2019, 870: 784 − 812. doi: 10.1017/jfm.2019.545 [14] ZHANG Y, AZMAN A N, XU K W, et al. Two-phase flow regime identification based on the liquid-phase velocity information and machine learning [J]. Experiments in Fluids, 2020, 61(10): 1 − 16. [15] HAN J, TAO J, WANG C. FlowNet: A Deep learning framework for clustering and selection of streamlines and stream surfaces [J]. IEEE Transactions On Visualization and Computer Graphics, 2018, 26(4): 1732 − 1744. [16] LIU Y, LU Y, WANG Y, et al. A CNN-based shock detection method in flow visualization [J]. Computers & Fluids, 2019, 184: 1 − 9. [17] OMATA N, SHIRAYAMA S. A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder [J]. Aip Advances, 2019, 9(1): 015006. [18] STRÖFER C, WU J, XIAO H, et al. Data-driven, physics-based feature extraction from fluid flow fields [J]. Communications in Computational Physics, 2018, 25(3): 625 − 650. [19] MURATA T, FUKAMI K, FUKAGATA K. Nonlinear mode decomposition with convolutional neural networks for fluid dynamics [J]. Journal of Fluid Mechanics, 2020: 882. [20] 战庆亮, 葛耀君, 白春锦. 基于尾流时程目标识别的流场参数选择研究[J]. 力学学报, 2021, 10(53): 2692 − 2702.ZHAN Qingliang, GE Yaojun, BAI Chunjin. Study on flow field parameters of wake time history target recognition [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 10(53): 2692 − 2702. (in Chinese) [21] 战庆亮,葛耀君,白春锦. 基于深度学习的流场时程特征提取模型[J]. 物理学报, 2022, 71(7): 225 − 234.ZHAN Qingliang, GE Yaojun, BAI Chunjin. Flow feature extraction models based on deep learning [J]. Acta Physica Sinica, 2022, 71(7): 225 − 234. (in Chinese) [22] KRIZHEVSKY A, SUTSKEVER I, HINTON G E . ImageNet Classification with Deep Convolutional Neural Networks [J]. Communications of the ACM, 2017, 60(6): 84 − 90. doi: 10.1145/3065386 [23] WANG Z, YAN W, OATES T. Time series classification from scratch with deep neural networks: A strong baseline [C]// International Joint Conference on Neural Networks. Anchorage USA: IEEE, 2017. [24] 战庆亮, 周志勇, 葛耀君. Re=3900圆柱绕流的三维大涡模拟[J]. 哈尔滨工业大学学报, 2015, 47(12): 75 − 79.ZHAN Qingliang, ZHOU Zhiyong, GE Yaojun. 3-Dimensional large eddy simulation of circular cylinder at Re=3900 [J]. Journal of Harbin Institute of Technology, 2015, 47(12): 75 − 79. (in Chinese) [25] KINGMA D, BA J. Adam: A method for stochastic optimization [C]. International Conference on Learning Representations. San Diego CA, ICLR, 2015. -