STUDY ON Nu -Mu CORRELATION CURVES OF CONCRETE FILLED DOUBLE SKIN STEEL TUBULAR (CFDST) BEAM-COLUMNS WITH EXTERNAL STAINLESS STEEL TUBE
-
摘要: 外包不锈钢管中空夹层钢管混凝土构件结合了中空夹层钢管混凝土(CFDST)与不锈钢的优点,在桥墩、海洋平台与输电塔结构中有广泛应用前景。为此,该文基于前期试验,采用自编纤维模型法程序对225个外包不锈钢管CFDST压弯构件进行了系统分析。研究了各参数对该类压弯构件典型N/Nu-M/Mu曲线的影响,并将相关曲线与普通外包碳素钢管CFDST构件进行了对比,最后提出了该类压弯构件N/Nu-M/Mu相关曲线方程。分析结果表明:该文自编纤维模型法程序可较好预测外包不锈钢管CFDST构件压弯承载力以及N/Nu-M/Mu曲线的发展;混凝土强度、内管径厚比、钢材屈服强度、空心率、名义含钢率与长细比影响N/Nu-M/Mu曲线的形状;由于不锈钢材料明显的应变强化效应,相比于外包碳素钢管CFDST构件,外包不锈钢管CFDST构件的N/Nu-M/Mu曲线接近于钢结构;基于试验与参数分析结果以及外包碳素钢CFDST计算公式,得到了外包不锈钢CFDST相关曲线特征点公式和曲线方程,与程序计算结果吻合较好。Abstract: Concrete filled double skin steel tubular (CFDST) members with external stainless steel tubes present the merits of CFDST members and stainless steel, and have a wide application prospect in bridge piers, in offshore platforms and, in transmission towers. For this purpose, totally 225 CFDST beam-columns with outer stainless steel tubes were systematically analyzed using a fiber-based model in this work. The influences of the parameter on the typical N/Nu-M/Mu curve were investigated, and the obtained curves were compared with those of CFDST members with carbon steel. Finally, the correlation curve equation of N/Nu-M/Mu was proposed. The study results showed that: the fiber-based model program developed could well predict the compression-bending capacity and the development of N/Nu-M/Mu curve of CFDST members with external stainless steel tube; the shape of N/Nu-M/Mu curve is affected by the concrete strength, by the ratio of the diameter to the thickness of the inner steel tube, by the yield strength of steel, by the hollow ratio, by the nominal steel ratio and, by slenderness ratio; due to an obvious strain-strengthening effect of stainless steel, the N/Nu-M/Mu curves of the CFDST members with external stainless steel tubes are close to the steel members when compared to those of the CFDST members with external carbon tubes; and the characteristic-point and N/Nu-M/Mu formulas for CFDST members with outer stainless steel based on the test and parametrical results were suggested by modifying the formulas used for the companion with outer carbon steel, the calculation results by the formulas modified indicate a good agreement with the program-calculated results.
-
表 1 钢材材料性能
Table 1. Material properties of steels
钢材类别 钢材屈服强度
σy/MPa钢材极限强度
σu/MPa弹性模量
Es/MPa伸长率
δ碳素钢管 (2.01 mm) 275 351 2.08×105 0.22 碳素钢管 (2.52 mm) 276 384 2.05×105 0.25 不锈钢管 (1.88 mm) 322 703 1.91×105 0.46 表 2 试件参数
Table 2. Parameters of specimen
试件名称 外管直径×壁厚
Do×to
/mm内管直径×壁厚
Di×ti
/mm柱长L
/mm偏心距e
/mm长细比λ C1-0.44-4-a/b 114×1.88 48×2.52 800 4 23 C1-0.69-14-a/b 114×1.88 76×2.01 800 14 22 C2-0.44-4-a/b 114×1.88 48×2.52 1300 4 38 C2-0.69-14-a/b 114×1.88 76×2.01 1300 14 35 C3-0.44-4-a/b 114×1.88 48×2.52 1800 4 53 C3-0.69-14-a/b 114×1.88 76×2.01 1800 14 49 注:空心率χ和 长细比λ根据《中空夹层钢管混凝土结构技术规程》[20]分别取:χ= Di/( Do−2×to)和λ=4Le / [$D_0^2 $+(Di−2t0)2]1/2。 表 3 参数取值
Table 3. Parameter values
混凝土强度
fcu,k /MPa外管名义屈服
强度fyo /MPa不锈钢应变
强化系数n内管屈服强度
fyi /MPa径厚比Di/ti 含钢率αn 空心率χ 长细比λ 40, 60, 80 210 7.4 235, 355, 420 23, 46, 69 0.06, 0.10, 0.14 0.25, 0.5, 0.75 10, 20, 40, 60, 80, 100, 150 330 4.7 450 5.0 -
[1] HAN L H, LAM D, NETHERCOT D A. Design guide for concrete-filled double skin steel tubular structures [M]. first ed. CRC Press, 2018: 113. [2] LI W, HAN L H, ZHAO X L. Axial strength of concrete-filled double skin steel tubular (CFDST) columns with preload on steel tubes [J]. Thin-walled structures, 2012, 56: 9 − 20. doi: 10.1016/j.tws.2012.03.004 [3] WANG F. Effective design of submarine pipe-in-pipe using Finite Element Analysis [J]. Ocean Engineering, 2018, 153: 23 − 32. doi: 10.1016/j.oceaneng.2018.01.095 [4] HAN L H, REN Q X, LI W. Tests on stub stainless steel–concrete–carbon steel double-skin tubular (DST) columns [J]. Journal of Constructional Steel Research, 2011, 67(3): 437 − 452. doi: 10.1016/j.jcsr.2010.09.010 [5] 黄宏. 中空夹层钢管混凝土压弯构件的力学性能研究 [D]. 福州: 福州大学, 2006: 192 .HUANG Hong. Behavior of concrete filled double-skin steel tubular beam-columns [D]. Fuzhou: Fuzhou University, 2006: 192. (in Chinese) [6] 杨俊杰, 徐汉勇, 彭国军. 八边形中空夹层钢管混凝土轴压短柱力学性能的研究[J]. 土木工程学报, 2007, 40(2): 33 − 38. doi: 10.3321/j.issn:1000-131X.2007.02.006YANG Jujie, XU Hanyong, PENG Guojun. A study on the behavior of concrete-filled double skin steel tubular columns of octagon section under axial compression [J]. China Civil Engineering Journal, 2007, 40(2): 33 − 38. (in Chinese) doi: 10.3321/j.issn:1000-131X.2007.02.006 [7] 王志滨, 高扬虹, 池思源, 等. 中空夹层薄壁钢管混凝土柱偏心受压性能研究[J]. 建筑结构学报, 2018, 39(5): 124 − 131.WANG Zhibin, GAO Yanghong, CHI Siyuan, et al. Behavior of concrete-filled double-skin thin-walled steel tubular columns under eccentric compression [J]. Journal of Building Structures, 2018, 39(5): 124 − 131. (in Chinese) [8] 周绪红, 王宇航, 陆国兵, 等. 往复纯扭作用下中空夹层钢管混凝土柱受力性能研究[J]. 建筑结构学报, 2017(增刊 1): 266 − 271.ZHOU Xuhong, WANG Yuhang, LU Guobing, et al. Mechanical behavior of concrete filled double skin steel tubular columns under cyclic pure torsion [J]. Journal of Building Structures, 2017(Suppl 1): 266 − 271. (in Chinese) [9] 孙琳璘. 大空心率中空夹层钢管混凝土短柱轴压力学性能研究 [D]. 大连: 大连理工大学, 2020: 55.SUN Linlin. Axial compressive behavior of CFDST stub columns with large hollow ratio [D]. Dalian: Dalian University of Technology, 2020: 55. (in Chinese) [10] 任逸文. 冲击荷载下中空夹层钢管混凝土动态力学性能试验研究 [D]. 南京: 东南大学, 2018: 97.REN Yiwen. Experimental study on dynamic mechanical properties of concrete filled double steel tube under impact loading [D]. Nanjing: Southeast University, 2018: 97. (in Chinese) [11] 刘晓, 徐建烨, 王兵. 高温后中空夹层钢管混凝土柱压弯机理分析[J]. 工程力学, 2018, 35(增刊 1): 40 − 45. doi: 10.6052/j.issn.1000-4750.2017.06.S001LIU Xiao, XU Jianye, WANG Bing. Mechanical behavior analysis of concrete filled double skin steel tubular columns after high temperature [J]. Engineering Mechanics, 2018, 35(Suppl 1): 40 − 45. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.06.S001 [12] YAN X, ZHAO Y, LIN S. Compressive behaviour of circular CFDST short columns with high- and ultrahigh-strength concrete [J]. Thin-Walled Structures, 2021, 164: 107898. [13] YAN X, ZHAO Y. Experimental and numerical studies of circular sandwiched concrete axially loaded CFDST short columns [J]. Engineering Structures, 2021, 230: 111617. [14] 张伟杰, 廖飞宇, 侯超, 等. 不同细骨料下不锈钢管混凝土构件受弯性能研究[J]. 工程力学, 2021, 38(10): 200 − 214. doi: 10.6052/j.issn.1000-4750.2020.10.0746ZHANG Weijie, LIAO Feiyu, HOU Chao, et al. Concrete-filled stainless steel tubular members under pure bending [J]. Engineering Mechanics, 2021, 38(10): 200 − 214. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0746 [15] 代鹏, 杨璐, 卫璇, 等. 不锈钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2019, 36(增刊 1): 298 − 305. doi: 10.6052/j.issn.1000-4750.2018.05.S065DAI Peng, YANG Lu, WEI Xuan, et al. Experimental studies on the behavior and capacity of concrete filled stainless steel tube short columns [J]. Engineering Mechanics, 2019, 36(Suppl 1): 298 − 305. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.S065 [16] HASSANEIN M F, KHAROOB Q F, LIANG Q Q. Circular concrete-filled double skin tubular short columns with external stainless-steel tubes under axial compression [J]. Thin-Walled Structures, 2013, 73: 252 − 263. doi: 10.1016/j.tws.2013.08.017 [17] HASSANEIN M F, KHAROOB O F. Analysis of circular concrete-filled double skin tubular slender columns with external stainless-steel tubes [J]. Thin-Walled Structures, 2014, 79: 23 − 37. doi: 10.1016/j.tws.2014.01.008 [18] WANG F C, HAN L H, LI W. Analysis behavior of CFDST stub columns with external stainless-steel tubes under axial compression [J]. Thin-Walled Structures, 2018, 127: 756 − 768. doi: 10.1016/j.tws.2018.02.021 [19] ZHAO H, WANG R, LAM D, et al. Behaviours of circular CFDST with stainless steel external tube: slender columns and beams [J]. Thin-Walled Structures, 2021, 158: 107172. doi: 10.1016/j.tws.2020.107172 [20] T/CCES 7−2020, 中空夹层钢管混凝土结构技术规程 [S]. 北京: 中国土木工程学会, 2020.T/CCES 7−2020, Technical specification for concrete-filled double skin steel tubular structures [S]. Beijing: China Civil Engineering Society, 2020. (in Chinese) [21] 韩林海. 钢管混凝土结构—理论与实践(第三版) [M]. 北京:科学出版社, 2016: 967.HAN Linhai. Concrete Filled Steel Tube structure theory and Practice (3rd Edition) [M]. Beijing: Science Press, 2016: 967. (in Chinese) [22] ABDELLA K. Inversion of a full-range stress–strain relation for stainless steel alloys [J]. International Journal of Non-Linear Mechanics, 2006, 41(3): 456 − 463. doi: 10.1016/j.ijnonlinmec.2005.10.002 [23] 安国青, 赵晖, 王蕊, 等. 外包不锈钢圆中空夹层钢管混凝土柱抗撞计算方法研究[J]. 工程力学, 2021, 38(6): 227 − 236. doi: 10.6052/j.issn.1000-4750.2020.11.0823AN Guoqing, ZHAO Hui, WANG Rui, et al. Calculation method for impact resistance of circular concrete-filled double-skin tubular columns with external stainless-steel tube [J]. Engineering mechanics, 2021, 38(6): 227 − 236. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.11.0823 [24] 马骥. 圆钢管再生混凝土柱静力性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013 : 121.MA Ji. Static behavior of recycled aggregate concrete filled circular steel tubular columns [D]. Harbin: Harbin Institute of Technology, 2013: 121. (in Chinese) [25] GARDNER L, ASHRAF M. Structural design for non-linear metallic materials [J]. Engineering Structures, 2006, 28(6): 926 − 934. [26] BUCHANAN C, GARDNER L, LIEW A. The continuous strength method for the design of circular hollow sections [J]. Journal of Constructional Steel Research, 2016, 118: 207 − 216. [27] BS EN 1994-1-4: 2004. Design of steel structures. Part 1-4: General rules -Supplementary rules for stainless steel [S]. London: British Standards Institution, 2005. [28] HAN L H, XU C Y, TAO Z. Performance of concrete filled stainless steel tubular (CFSST) columns and joints: Summary of recent research [J]. Journal of Constructional Steel Research, 2019, 152: 117 − 131. doi: 10.1016/j.jcsr.2018.02.038 -