HEALTH ASSESSMENT OF TIBETAN ANCIENT WOOD STRUCTURES BASED ON THE PREDICTED VALUE OF STRAIN MONITORING DATA
-
摘要: 为增加藏式古建筑木结构的安全冗余度,该文提出了短期应变监测数据预测方法,以此对藏式古建筑木结构健康状态进行预判性评估。以回廊结构为对象,利用Sobel算子与卷积神经网络方法处理传感器带来的多种数据异常。通过多项式回归和功率谱密度的方法确定应变监测数据组分。引入变分模态分解法对数据进行解耦,以Prophet算法预测短期温度监测应变,以Gumbel极值理论预测不同重现期下的人群监测应变。以不同重现期下的应变监测数据预测值的叠加结果确定需重点关注的结构位置和需立即修缮的结构位置,以满足藏式古建木构的预防性保护要求和最小扰动原则。Abstract: In order to increase the safety redundancy of the Tibetan ancient wood structures (TAWS), this paper proposes a prediction method to predict their health status based on short-term strain monitoring data. The corridor structure is taken as the research object, with the Sobel operator and the convolutional neural network method being used to deal with various data anomalies from sensors. The strain monitoring data components are determined by polynomial regression and power spectral density. The prophet algorithm is used to predict short-term temperature induced strain, and the Gumbel extreme value theory is used to predict human induced strain under different return periods. The superposition results of the strain monitoring data prediction values under different return periods are used to determine the structural positions that desire more attention and repair, so that the preventive protection requirements and minimum disturbance requirements can be fulfilled.
-
表 1 应变监测数据失真模式
Table 1. Distortion modes of strain monitoring data
编号 异常模式 现象 图例 1 数据缺失 曲线不连续,缺失部分显示为空白 2 数据重复 曲线存在不随时间改变的直线 3 离群值 曲线中存在不合常理的跳点 表 2 各月份决定系数R2
Table 2. Coefficient of determination R2 of each month
月份 1 2 3 4 5 6 R2 0.85 0.87 0.86 0.87 0.89 0.84 月份 7 8 9 10 11 12 R2 0.76 0.75 0.77 0.87 0.88 0.89 表 3 预测结果与阈值对比
Table 3. Comparison between prediction results and threshold
位置 温度应变
预测峰值/με人群应变
预测值/με初始应
变/με叠加应
变/με规范阈
值/μεB10 56.35 罕遇:31.76 2.25 90.36 171.81 多遇:6.99 65.59 B11 50.23 罕遇:33.53 0.33 84.09 171.81 多遇:7.19 57.75 B23 61.35 罕遇:38.62 7.36 107.33 171.81 多遇:7.21 75.92 B24 67.66 罕遇:35.11 2.71 105.48 171.81 多遇:8.13 78.51 -
[1] PRIETO A J, VASQUEZ V, SILVA A, et al. Protection value and functional service life of heritage timber buildings [J]. Building research & information, 2019, 47(5/6): 567 − 584. [2] LI T H, YANG N. Condition assessment of timber beam in a typical Tibetan heritage building under crowd load [J]. Advances in Structural Engineering, 2021, 9(24): 1910 − 1925. [3] HOU S, DONG B, FAN J, et al. Variational mode decomposition based time-varying force identification of stay cables [J]. Applied Sciences, 2021, 11(3): 11031254. doi: 10.3390/app11031254 [4] TIAN H, WANG J, CAO S, et al. Probabilistic assessment of the safety of main cables for long-span suspension bridges considering corrosion effects [J]. Advances in Civil Engineering, 2021, 2021(7): 1 − 10. [5] LO H, GHASEMI A, DIALLO C, et al. Comparative study on logical analysis of data (LAD), artificial neural networks (ANN), and proportional hazards model (PHM) for maintenance prognostics [J]. Journal of Quality in Maintenance Engineering, 2019, 25(1): 2 − 24. doi: 10.1108/JQME-07-2017-0051 [6] 单伽锃, 张寒青, 宫楠. 基于监测数据的结构地震损伤追踪与量化评估方法[J]. 工程力学, 2021, 38(1): 164 − 173. doi: 10.6052/j.issn.1000-4750.2020.03.0138DAN Jiazeng, ZHANG Hanqing, GONG Nan. Tracking and quantitative evaluation of earthquake-induced structural damage using health monitoring data [J]. Engineering Mechanics, 2021, 38(1): 164 − 173. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0138 [7] 李游, 李传习, 陈卓异, 等. 基于监测数据的钢箱梁U肋细节疲劳可靠性分析[J]. 工程力学, 2020, 37(2): 111 − 123. doi: 10.6052/j.issn.1000-4750.2019.03.0114LI You, LI Chuanxi, CHEN Zhuoyi, et al. Fatigue reliability analysis of U-rib detail of steel box girder based on monitoring data [J]. Engineering Mechanics, 2020, 37(2): 111 − 123. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0114 [8] KO J M, NI Y Q. Technology developments in structural health monitoring of large-scale bridges [J]. Engineering Structures, 2005, 27(12): 1715 − 1725. doi: 10.1016/j.engstruct.2005.02.021 [9] DAI L, YANG N, ZHANG L. Monitoring crowd load effect on typical ancient Tibetan building [J]. Structural Control and Health Monitoring, 2016, 23(7): 998 − 1014. doi: 10.1002/stc.1821 [10] BAI X B, YANG N, YANG Q S. Temperature effect on the structural strains of an ancient Tibetan building based on long-term monitoring data [J]. Earthquake Engineering and Engineering Vibration, 2018, 17(3): 641 − 657. doi: 10.1007/s11803-018-0437-x [11] QIN J W, LAW S S, YANG Q S, et al. Finite element analysis of pedestrian-bridge dynamic interaction [J]. Journal of Applied Mechanics, 2013, 81(4): 041001-1 − 041001-15. [12] QIN J W, LAW S S, YANG Q S, et al. Pedestrian-bridge dynamic interaction, including human participation [J]. Journal of Sound & Vibration, 2013, 332(4): 1107 − 1124. [13] BAO Y Q, TANG Z Y, LI H, et al. Computer vision and deep learning-based data anomaly detection method for structural health monitoring [J]. Structural Health Monitoring, 2019, 18(2): 401 − 421. doi: 10.1177/1475921718757405 [14] 孙雅琼, 赵作周. 桥梁结构动应变监测的温度效应实时分离与动荷载识别[J]. 工程力学, 2019, 36(2): 186 − 194. doi: 10.6052/j.issn.1000-4750.2017.12.0954SUN Yaqiong, ZHAO Zuozhou. Real-time separation of temperature effect on dynamic strain monitoring and moving load identification of bridge structure [J]. Engineering Mechanics, 2019, 36(2): 186 − 194. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0954 [15] CIVERA M, SURACE C. A comparative analysis of signal decomposition techniques for structural health monitoring on an experimental benchmark [J]. Sensors, 2021, 21(5): 21051825. doi: 10.3390/s21051825 [16] TAYLOR S J, LETHAM B. Forecasting at scale [J]. The American Statistician, 2017, 8(1): 1 − 25. [17] GOMES M I, HAAN L D, PENG L. Semiparametric estimation of the second order parameter in statistics of extremes [J]. Extremes, 2002, 5(4): 387 − 414. doi: 10.1023/A:1025128326588 [18] BAKER C J, QUINN A D. Spatial and temporal correlations of wind speeds [J]. Proceedings of the Institution of Civil Engineers Structures & Buildings, 2010, 163(2): 65 − 72. [19] GB/T 50165−2020, 古建筑木结构维护与加固技术标准[S]. 北京: 中国建筑工业出版社, 2020.GB/T 50165−2020, Technical standard for maintenance and strengthening of historic timber building [S]. Beijing: China Architecture Industry Press, 2020. (in Chinese) -