EXPERIMENTAL STUDY ON RESIDUAL STRESS OF Q235 STEEL WALLBOARD-Q460 HIGH STRENGTH STEEL COLUMN STRUCTURAL SYSTEM
-
摘要: 在箱式钢结构中起主要承载作用的侧面墙板-立柱结构体系中,受墙板蒙皮支撑作用的高强钢立柱,其残余应力分布受与墙板焊接连接过程影响,与独立工作焊接H形截面构件有较大差异。为研究Q235钢墙板—Q460高强钢立柱结构体系的残余应力分布规律,采用盲孔法对6个结构体系试件和2个独立Q460高强钢焊接H形截面试件进行了试验研究。基于测量数据,得到了所有试件的全截面残余应力分布,分析了墙板与立柱焊接连接、截面尺寸等因素对残余应力分布的影响,并研究了截面各板件间残余应力的相互影响及自平衡性。结果表明:立柱与墙板的焊接在一定程度上降低了立柱后翼缘中部的最大残余拉应力,减小了后翼缘残余压应力的分布范围,对前翼缘和腹板无明显影响;残余拉应力幅值与截面尺寸无直接关系,残余压应力随着板件宽厚比的增大而减小;各板件间残余应力存在相互影响作用,前翼缘、腹板以及后翼缘与墙板组合板件这3部分分别满足自平衡。提出了适用于Q235钢墙板—Q460高强钢立柱结构体系的较为准确和安全的残余应力分布数学模型,为后续研究受墙板蒙皮支撑的高强钢立柱稳定性奠定基础。Abstract: The wallboard-column structural system on the side of box-type steel structures plays a main bearing role. The residual stress distribution of the high strength steel column supported by stressed skin wallboards is affected by the welding with wallboards, as a result, it is quite different from the welded H-section of an individually working member. In order to investigate the residual stress distribution of Q235 steel wallboard-Q460 high strength steel column structural systems, an experimental study was conducted using hole-drilling method, including six structural system specimens and two independent Q460 high strength steel welded H-section specimens. Based on the experiment results, the magnitude and shape of residual stress distribution over the entire section were obtained. The effects of the welding connection between wallboards and column, sectional dimensions and the interaction among component plates on residual stress distribution were analyzed. The self-equilibrium of residual stress occurring in each plate was examined. The welding between wallboards and column reduces the maximum tensile residual stress in the middle of the column rear flange to a certain extent, and reduces the distribution range of the compressive residual stress in rear flange, but has no obvious influence on the front flange and web. The tensile residual stress amplitude is not directly related to the sectional dimensions. The compressive residual stress amplitude decreases with the increase of the plate width-thickness ratio. There is an interaction between the residual stresses of the component plates. The residual stresses of front flange, web and rear flange-wallboards composite plate can be considered to satisfy self-equilibrium respectively. An accurate and reliable residual stress distribution mathematical model for Q235 steel wallboard-Q460 high strength steel column structural system was proposed, which lays a foundation for subsequent research on the stability of high strength steel columns supported by stressed wallboard skin.
-
表 1 试件截面尺寸
Table 1. Sectional dimensions of specimens
试件编号 立柱名义尺寸 腹板高度
h0/mm腹板壁厚
tw/mm翼缘宽度
bf/mm翼缘壁厚
tf/mm墙板宽度
w/mm墙板厚
t/mm外伸翼缘宽厚比
be/tf腹板高厚比
h0/twS1 H1-130-130-5-10 129.0 5.1 129.6 10.1 195.0 4.7 6.16 25.30 S2 H1-200-150-10-12 205.2 10.6 153.6 12.2 194.5 4.8 5.86 19.36 S3 H1-150-200-10-12 150.6 10.2 203.0 12.1 194.5 4.7 7.97 14.76 S4 H1-200-200-10-12 203.5 10.2 202.5 12.1 195.0 4.7 7.95 19.95 S5 H1-200-230-10-12 204.0 10.2 232.9 12.3 195.6 4.7 9.05 20.00 S6 H1-250-200-10-12 248.5 10.4 204.4 12.2 194.1 4.8 7.95 23.89 S7 H2-200-200-10-12 206.8 10.3 202.5 12.2 − − 7.88 20.08 S8 H2-250-200-10-12 252.8 10.3 203.6 12.2 − − 7.92 25.54 注:H1、H2分别表示墙板-立柱结构体系试件及单独焊接H形截面试件。以H1-200-150-10-12为例,表示立柱截面名义尺寸:腹板高度200 mm,翼缘宽度150 mm,腹板厚度10 mm,翼缘厚度12 mm。 表 2 材性试验结果
Table 2. Mechanical property test results
钢板类型 弹性模量
E/GPa屈服强度
fy/MPa抗拉强度
fu/MPa泊松比
ν断后伸长率
δ/(%)Q460-5 mm 189 503 626 0.28 20.5 Q460-10 mm 193 483 605 0.28 21.2 Q460-12 mm 191 490 699 0.29 18.6 Q235-5 mm 202 320 438 0.30 29.0 表 3 应力标定常数A、B试验结果
Table 3. Measurement of calibration constants A and B
钢材类型 标定
应力
水平适用范围 标定
常数A/
MPa−1标定
常数B/
MPa−1Q460钢材 0.3fy 0<|σr|<0.45fy −0.283 −0.650 0.6fy 0.45fy≤|σr|<0.7fy −0.287 −0.662 0.8fy |σr|≥0.7fy −0.312 −0.693 Q235钢材 0.3fy 0<|σr|<0.45fy −0.251 −0.596 0.6fy 0.45fy≤|σr|<0.75fy −0.283 −0.647 0.9fy |σr|≥0.75fy −0.309 −0.692 表 4 立柱截面典型位置处残余应力数值
Table 4. Characterized residual stress at typical locations of column section
试件编号 前翼缘/MPa 后翼缘/MPa 腹板/MPa σft1 σfte1 σfte2 σfc1 σfc2 σft2 σfte3 σfte4 σfc3 σfc4 σwt1 σwt2 σwc S1 319.0 30.5 −32.3 −190.9 −160.1 185.9 291.9 222.2 −168.5 −144.3 −105.1 −159.9 −158.9 S2 364.9 21.9 11.3 −181.9 −170.8 334.8 244.5 206.7 −133.2 −122.2 158.9 10.2 −75.5 S3 251.2 98.9 40.3 −130.3 −115.6 280.4 225.2 154.5 −102.6 −114.7 115.2 64.4 −123.4 S4 362.2 166.3 127.6 −108.2 −98.3 308.5 239.3 284.4 −113.0 −104.3 44.2 3.6 −74.9 S5 380.6 52.2 72.6 −96.3 −82.8 358.4 295.7 258.3 −103.1 −92.4 95.1 49.2 −72.4 S6 316.4 109.6 107.7 −103.6 −135.1 282.4 309.8 262.2 −114.4 −112.9 104.9 83.2 −65.1 S7 368.6 71.1 18.1 −101.2 −103.0 384.7 90.7 42.5 −104.5 −98.4 144.4 139.6 −70.1 S8 338.7 115.0 48.7 −104.8 −112.9 388.6 72.8 86.8 −92.7 −98.6 35.5 95.6 −67.1 表 5 墙板截面典型位置处残余应力数值
Table 5. Characterized residual stress at typical locations of wallboard section
试件编号 左墙板/MPa 右墙板/MPa σqt1 σqc1 σqt2 σqc2 S1 275.5 −103.9 258.8 −104.4 S2 177.2 −97.7 224.6 −117.4 S3 256.1 −86.5 294.0 −101.6 S4 245.8 −108.9 221.0 −100.3 S5 246.6 −77.7 238.5 −119.0 S6 259.8 −99.2 192.5 −106.5 -
[1] 钱海峰, 赵婧同, 王元清, 等. 考虑除尘器箱体墙板-立柱协同受力时立柱再横向荷载作用下的内力计算[J]. 工程力学, 2019, 36(7): 227 − 237, 247. doi: 10.6052/j.issn.1000-4750.2018.03.0134QIAN Haifeng, ZHAO Jingtong, WANG Yuanqing, et al. Internal force evaluation of columns in electrostatic precipitator casing under transverse loads considering the cooperative load bearing of columns and wallboards [J]. Engineering Mechanics, 2019, 36(7): 227 − 237, 247. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0134 [2] 宋碧颖, 王登峰, 王元清, 等. 除尘器壳体双肢组合截面立柱轴压稳定性研究[J]. 工程力学, 2020, 37(3): 228 − 237. doi: 10.6052/j.issn.1000-4750.2019.05.0280SONG Biying, WANG Dengfeng, WANG Yuanqing, et al. Stability of axially compressed columns composed of double limbs in precipitator casing [J]. Engineering Mechanics, 2020, 37(3): 228 − 237. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.0280 [3] 班慧勇, 梅镱潇, 石永久. 不锈钢复合钢材钢结构研究进展[J]. 工程力学, 2021, 38(6): 1 − 23. doi: 10.6052/j.issn.1000-4750.2020.04.ST01BAN Huiyong, MEI Yixiao, SHI Yongjiu. Research advances of stainless-clad bimetallic steel structures [J]. Engineering Mechanics, 2021, 38(6): 1 − 23. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.ST01 [4] RASMUSSEN K, HANCOCK G. Plate slenderness limits for high strength steel sections [J]. Journal of Constructional Steel Research, 1992, 23: 73 − 96. doi: 10.1016/0143-974X(92)90037-F [5] RASMUSSEN K, HANCOCK G. Tests of high strength steel columns [J]. Journal of Constructional Steel Research, 1995, 34: 27 − 52. doi: 10.1016/0143-974X(95)97296-A [6] BEG D, HLADNIK L. Slenderness limit of Class 3 I cross-sections made of high strength steel [J]. Journal of Constructional Steel Research, 1996, 38(8): 201 − 207. [7] LI D, PARADOWSKA A, UY B, et al. Residual stresses of box and I-shaped columns fabricated from S960 ultra-high-strength steel [J]. Journal of Constructional Steel Research, 2020, 166: 105904. doi: 10.1016/j.jcsr.2019.105904 [8] SOMODI B, KÖVESDI B. Residual stress measurements on welded square box sections using steel grades of S235–S960 [J]. Thin-Walled Structures, 2018, 123: 142 − 154. doi: 10.1016/j.tws.2017.11.028 [9] LIU X, CHUNG K F. Experimental and numerical investigation into temperature histories and residual stress distributions of high strength steel S690 welded H-sections [J]. Engineering Structures, 2018, 165: 396 − 411. doi: 10.1016/j.engstruct.2018.03.044 [10] 童乐为, 赵俊, 周锋, 等. Q460高强度焊接H型钢残余应力试验研究[J]. 工业建筑, 2012, 42(1): 51 − 55.TONG Lewei, ZHAO Jun, ZHOU Feng, et al. Experimental investigation on longitudinal residual stress of Q460 high-strength steel welded H-section members [J]. Industrial Construction, 2012, 42(1): 51 − 55. (in Chinese) [11] 班慧勇, 施刚, 石永久, 等. 国产Q460高强度钢材焊接工字形截面残余应力试验及分布模型研究[J]. 工程力学, 2014, 31(6): 60 − 69, 100. doi: 10.6052/j.issn.1000-4750.2012.09.0680BAN Huiyong, SHI Gang, SHI Yongjiu, et al. Experimental investigation and modeling of residual stress in I sections welded by Q460 high strength steel [J]. Engineering Mechanics, 2014, 31(6): 60 − 69, 100. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.09.0680 [12] 班慧勇, 施刚, 石永久, 等. Q460高强钢焊接箱形截面残余应力研究[J]. 建筑结构学报, 2013, 34(1): 14 − 21.BAN Huiyong, SHI Gang, SHI Yongjiu, et al. Investigation on residual stress in Q460 high strength steel welded box sections [J]. Journal of Building Structures, 2013, 34(1): 14 − 21. (in Chinese) [13] 班慧勇, 施刚, 石永久. 960 MPa高强钢焊接箱形截面残余应力试验及统一分布模型研究[J]. 土木工程学报, 2013, 46(11): 63 − 69.BAN Huiyong, SHI Gang, SHI Yongjiu. Experimental study on residual stress in 960 MPa high strength steel welded box sections and unified model [J]. China Civil Engineering Journal, 2013, 46(11): 63 − 69. (in Chinese) [14] GB/T 31310−2014, 金属材料 残余应力测定 钻孔应变法 [S]. 北京: 中国标准出版社, 2014.GB/T 31310−2014, Metallic material: determination of residual stress: hole drilling strain-gauge method [S]. Beijing: Standard Press of China, 2014. (in Chinese) [15] GB 50661−2011, 钢结构焊接规范 [S]. 北京: 中国建筑工业出版社, 2011.GB 50661−2011, Code for welding of steel structures [S]. Beijing: China Architecture &Building Press, 2011. (in Chinese) [16] GB/T 228.1−2010, 金属材料 拉伸试验: 第1部分: 室温拉伸试验方法 [S]. 北京: 中国标准出版社, 2010.GB/T 228.1−2010, Metallic materials: Tensile testing: Part1: Method of test at room temperature [S]. Beijing: Standard Press of China, 2010. (in Chinese) [17] 裴怡, 包亚峰, 唐慕尧, 等. 盲孔法测量精度的研究—边界及孔间距的影响[J]. 焊接学报, 1994(3): 191 − 196. doi: 10.3321/j.issn:0253-360X.1994.03.002PEI Yi, BAO Yafeng, TANG Muyao, et al. Research on measurement accuracy of blind hole method—Influence of boundary and hole spacing [J]. Transaction of the China Welding Institution, 1994(3): 191 − 196. (in Chinese) doi: 10.3321/j.issn:0253-360X.1994.03.002 -