留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Q235钢墙板-Q460高强钢立柱结构体系残余应力分布试验研究

郭大鹏 周超 王登峰 王元清

郭大鹏, 周超, 王登峰, 王元清. Q235钢墙板-Q460高强钢立柱结构体系残余应力分布试验研究[J]. 工程力学, 2023, 40(2): 36-46, 55. doi: 10.6052/j.issn.1000-4750.2021.08.0630
引用本文: 郭大鹏, 周超, 王登峰, 王元清. Q235钢墙板-Q460高强钢立柱结构体系残余应力分布试验研究[J]. 工程力学, 2023, 40(2): 36-46, 55. doi: 10.6052/j.issn.1000-4750.2021.08.0630
GUO Da-peng, ZHOU Chao, WANG Deng-feng, WANG Yuan-qing. EXPERIMENTAL STUDY ON RESIDUAL STRESS OF Q235 STEEL WALLBOARD-Q460 HIGH STRENGTH STEEL COLUMN STRUCTURAL SYSTEM[J]. Engineering Mechanics, 2023, 40(2): 36-46, 55. doi: 10.6052/j.issn.1000-4750.2021.08.0630
Citation: GUO Da-peng, ZHOU Chao, WANG Deng-feng, WANG Yuan-qing. EXPERIMENTAL STUDY ON RESIDUAL STRESS OF Q235 STEEL WALLBOARD-Q460 HIGH STRENGTH STEEL COLUMN STRUCTURAL SYSTEM[J]. Engineering Mechanics, 2023, 40(2): 36-46, 55. doi: 10.6052/j.issn.1000-4750.2021.08.0630

Q235钢墙板-Q460高强钢立柱结构体系残余应力分布试验研究

doi: 10.6052/j.issn.1000-4750.2021.08.0630
基金项目: 国家自然科学基金项目(51308258);江苏省自然科学基金项目(BK 20130149);江苏省研究生科研与实践创新计划项目(SJCX20_0771)
详细信息
    作者简介:

    郭大鹏(1997−),男,安徽合肥人,硕士生,主要从事钢结构研究(E-mail: 6191404010@stu.jiangnan.edu.cn)

    周 超(1998−),男,黑龙江齐齐哈尔人,硕士生,主要从事钢结构研究(E-mail: 664516816 @qq.com)

    王元清(1963−),男,安徽霍山人,教授,博士,博导,主要从事结构工程研究(E-mail: wang-yq@mail.tsinghua.edu.cn)

    通讯作者:

    王登峰(1981−),男,江苏无锡人,副教授,博士,主要从事钢结构研究(E-mail: happywdf@126.com)

  • 中图分类号: TU391;TG404

EXPERIMENTAL STUDY ON RESIDUAL STRESS OF Q235 STEEL WALLBOARD-Q460 HIGH STRENGTH STEEL COLUMN STRUCTURAL SYSTEM

  • 摘要: 在箱式钢结构中起主要承载作用的侧面墙板-立柱结构体系中,受墙板蒙皮支撑作用的高强钢立柱,其残余应力分布受与墙板焊接连接过程影响,与独立工作焊接H形截面构件有较大差异。为研究Q235钢墙板—Q460高强钢立柱结构体系的残余应力分布规律,采用盲孔法对6个结构体系试件和2个独立Q460高强钢焊接H形截面试件进行了试验研究。基于测量数据,得到了所有试件的全截面残余应力分布,分析了墙板与立柱焊接连接、截面尺寸等因素对残余应力分布的影响,并研究了截面各板件间残余应力的相互影响及自平衡性。结果表明:立柱与墙板的焊接在一定程度上降低了立柱后翼缘中部的最大残余拉应力,减小了后翼缘残余压应力的分布范围,对前翼缘和腹板无明显影响;残余拉应力幅值与截面尺寸无直接关系,残余压应力随着板件宽厚比的增大而减小;各板件间残余应力存在相互影响作用,前翼缘、腹板以及后翼缘与墙板组合板件这3部分分别满足自平衡。提出了适用于Q235钢墙板—Q460高强钢立柱结构体系的较为准确和安全的残余应力分布数学模型,为后续研究受墙板蒙皮支撑的高强钢立柱稳定性奠定基础。
  • 图  1  除尘器箱体墙板—立柱结体系

    Figure  1.  Wallboard-column structural system of an electrostatic precipitator

    图  2  应变花布置示意图

    Figure  2.  Layout of strain rosette

    图  3  试件截面尺寸示意图

    Figure  3.  Sectional dimension diagram of the specimen

    图  4  标定试件

    Figure  4.  Calibration specimen diagram

    图  5  测点布置示意图

    Figure  5.  Layout of measuring points

    图  6  各试件残余应力测量结果

    Figure  6.  Residual stress test results of all specimens

    图  7  残余应力分布示意图

    Figure  7.  Illustration of residual stress distribution

    图  8  有、无焊接墙板的截面残余应力分布比较

    Figure  8.  Comparison of residual stress distribution between specimens with and without wallboard

    图  9  前、后翼缘残余应力对比

    Figure  9.  Comparison of residual stress distribution of the front and rear flanges

    图  10  板件宽厚比对残余应力影响

    Figure  10.  Influence of width-thickness ratio of steel plate on residual stress magnitude

    图  11  试件截面各板件残余不平衡应力

    Figure  11.  Residual disequilibrium stress of each plate in the specimen section

    图  12  翼缘残余应力分布汇总

    Figure  12.  Residual stress distribution of the flanges

    图  13  腹板残余应力分布汇总

    Figure  13.  Residual stress distribution of the webs

    图  14  墙板上残余应力分布汇总

    Figure  14.  Residual stress distribution of the wallboards

    图  15  分布模型中残余应力数值及分布形态

    Figure  15.  Magnitudes and shapes of residual stress distribution of the proposed distribution model

    表  1  试件截面尺寸

    Table  1.   Sectional dimensions of specimens

    试件编号立柱名义尺寸腹板高度
    h0/mm
    腹板壁厚
    tw/mm
    翼缘宽度
    bf/mm
    翼缘壁厚
    tf/mm
    墙板宽度
    w/mm
    墙板厚
    t/mm
    外伸翼缘宽厚比
    be/tf
    腹板高厚比
    h0/tw
    S1H1-130-130-5-10129.05.1129.610.1195.04.76.1625.30
    S2H1-200-150-10-12205.210.6153.612.2194.54.85.8619.36
    S3H1-150-200-10-12150.610.2203.012.1194.54.77.9714.76
    S4H1-200-200-10-12203.510.2202.512.1195.04.77.9519.95
    S5H1-200-230-10-12204.010.2232.912.3195.64.79.0520.00
    S6H1-250-200-10-12248.510.4204.412.2194.14.87.9523.89
    S7H2-200-200-10-12206.810.3202.512.27.8820.08
    S8H2-250-200-10-12252.810.3203.612.27.9225.54
    注:H1、H2分别表示墙板-立柱结构体系试件及单独焊接H形截面试件。以H1-200-150-10-12为例,表示立柱截面名义尺寸:腹板高度200 mm,翼缘宽度150 mm,腹板厚度10 mm,翼缘厚度12 mm。
    下载: 导出CSV

    表  2  材性试验结果

    Table  2.   Mechanical property test results

    钢板类型弹性模量
    E/GPa
    屈服强度
    fy/MPa
    抗拉强度
    fu/MPa
    泊松比
    ν
    断后伸长率
    δ/(%)
    Q460-5 mm1895036260.2820.5
    Q460-10 mm1934836050.2821.2
    Q460-12 mm1914906990.2918.6
    Q235-5 mm2023204380.3029.0
    下载: 导出CSV

    表  3  应力标定常数AB试验结果

    Table  3.   Measurement of calibration constants A and B

    钢材类型标定
    应力
    水平
    适用范围标定
    常数A/
    MPa−1
    标定
    常数B/
    MPa−1
    Q460钢材0.3fy0<|σr|<0.45fy−0.283−0.650
    0.6fy0.45fy≤|σr|<0.7fy−0.287−0.662
    0.8fy|σr|≥0.7fy−0.312−0.693
    Q235钢材0.3fy0<|σr|<0.45fy−0.251−0.596
    0.6fy0.45fy≤|σr|<0.75fy−0.283−0.647
    0.9fy|σr|≥0.75fy−0.309−0.692
    下载: 导出CSV

    表  4  立柱截面典型位置处残余应力数值

    Table  4.   Characterized residual stress at typical locations of column section

    试件编号前翼缘/MPa后翼缘/MPa腹板/MPa
    σft1σfte1σfte2σfc1σfc2σft2σfte3σfte4σfc3σfc4σwt1σwt2σwc
    S1319.030.5−32.3−190.9−160.1185.9291.9222.2−168.5−144.3−105.1−159.9−158.9
    S2364.921.911.3−181.9−170.8334.8244.5206.7−133.2−122.2158.910.2−75.5
    S3251.298.940.3−130.3−115.6280.4225.2154.5−102.6−114.7115.264.4−123.4
    S4362.2166.3127.6−108.2−98.3308.5239.3284.4−113.0−104.344.23.6−74.9
    S5380.652.272.6−96.3−82.8358.4295.7258.3−103.1−92.495.149.2−72.4
    S6316.4109.6107.7−103.6−135.1282.4309.8262.2−114.4−112.9104.983.2−65.1
    S7368.671.118.1−101.2−103.0384.790.742.5−104.5−98.4144.4139.6−70.1
    S8338.7115.048.7−104.8−112.9388.672.886.8−92.7−98.635.595.6−67.1
    下载: 导出CSV

    表  5  墙板截面典型位置处残余应力数值

    Table  5.   Characterized residual stress at typical locations of wallboard section

    试件编号左墙板/MPa右墙板/MPa
    σqt1σqc1σqt2σqc2
    S1275.5−103.9258.8−104.4
    S2177.2−97.7224.6−117.4
    S3256.1−86.5294.0−101.6
    S4245.8−108.9221.0−100.3
    S5246.6−77.7238.5−119.0
    S6259.8−99.2192.5−106.5
    下载: 导出CSV
  • [1] 钱海峰, 赵婧同, 王元清, 等. 考虑除尘器箱体墙板-立柱协同受力时立柱再横向荷载作用下的内力计算[J]. 工程力学, 2019, 36(7): 227 − 237, 247. doi: 10.6052/j.issn.1000-4750.2018.03.0134

    QIAN Haifeng, ZHAO Jingtong, WANG Yuanqing, et al. Internal force evaluation of columns in electrostatic precipitator casing under transverse loads considering the cooperative load bearing of columns and wallboards [J]. Engineering Mechanics, 2019, 36(7): 227 − 237, 247. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.03.0134
    [2] 宋碧颖, 王登峰, 王元清, 等. 除尘器壳体双肢组合截面立柱轴压稳定性研究[J]. 工程力学, 2020, 37(3): 228 − 237. doi: 10.6052/j.issn.1000-4750.2019.05.0280

    SONG Biying, WANG Dengfeng, WANG Yuanqing, et al. Stability of axially compressed columns composed of double limbs in precipitator casing [J]. Engineering Mechanics, 2020, 37(3): 228 − 237. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.0280
    [3] 班慧勇, 梅镱潇, 石永久. 不锈钢复合钢材钢结构研究进展[J]. 工程力学, 2021, 38(6): 1 − 23. doi: 10.6052/j.issn.1000-4750.2020.04.ST01

    BAN Huiyong, MEI Yixiao, SHI Yongjiu. Research advances of stainless-clad bimetallic steel structures [J]. Engineering Mechanics, 2021, 38(6): 1 − 23. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.ST01
    [4] RASMUSSEN K, HANCOCK G. Plate slenderness limits for high strength steel sections [J]. Journal of Constructional Steel Research, 1992, 23: 73 − 96. doi: 10.1016/0143-974X(92)90037-F
    [5] RASMUSSEN K, HANCOCK G. Tests of high strength steel columns [J]. Journal of Constructional Steel Research, 1995, 34: 27 − 52. doi: 10.1016/0143-974X(95)97296-A
    [6] BEG D, HLADNIK L. Slenderness limit of Class 3 I cross-sections made of high strength steel [J]. Journal of Constructional Steel Research, 1996, 38(8): 201 − 207.
    [7] LI D, PARADOWSKA A, UY B, et al. Residual stresses of box and I-shaped columns fabricated from S960 ultra-high-strength steel [J]. Journal of Constructional Steel Research, 2020, 166: 105904. doi: 10.1016/j.jcsr.2019.105904
    [8] SOMODI B, KÖVESDI B. Residual stress measurements on welded square box sections using steel grades of S235–S960 [J]. Thin-Walled Structures, 2018, 123: 142 − 154. doi: 10.1016/j.tws.2017.11.028
    [9] LIU X, CHUNG K F. Experimental and numerical investigation into temperature histories and residual stress distributions of high strength steel S690 welded H-sections [J]. Engineering Structures, 2018, 165: 396 − 411. doi: 10.1016/j.engstruct.2018.03.044
    [10] 童乐为, 赵俊, 周锋, 等. Q460高强度焊接H型钢残余应力试验研究[J]. 工业建筑, 2012, 42(1): 51 − 55.

    TONG Lewei, ZHAO Jun, ZHOU Feng, et al. Experimental investigation on longitudinal residual stress of Q460 high-strength steel welded H-section members [J]. Industrial Construction, 2012, 42(1): 51 − 55. (in Chinese)
    [11] 班慧勇, 施刚, 石永久, 等. 国产Q460高强度钢材焊接工字形截面残余应力试验及分布模型研究[J]. 工程力学, 2014, 31(6): 60 − 69, 100. doi: 10.6052/j.issn.1000-4750.2012.09.0680

    BAN Huiyong, SHI Gang, SHI Yongjiu, et al. Experimental investigation and modeling of residual stress in I sections welded by Q460 high strength steel [J]. Engineering Mechanics, 2014, 31(6): 60 − 69, 100. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.09.0680
    [12] 班慧勇, 施刚, 石永久, 等. Q460高强钢焊接箱形截面残余应力研究[J]. 建筑结构学报, 2013, 34(1): 14 − 21.

    BAN Huiyong, SHI Gang, SHI Yongjiu, et al. Investigation on residual stress in Q460 high strength steel welded box sections [J]. Journal of Building Structures, 2013, 34(1): 14 − 21. (in Chinese)
    [13] 班慧勇, 施刚, 石永久. 960 MPa高强钢焊接箱形截面残余应力试验及统一分布模型研究[J]. 土木工程学报, 2013, 46(11): 63 − 69.

    BAN Huiyong, SHI Gang, SHI Yongjiu. Experimental study on residual stress in 960 MPa high strength steel welded box sections and unified model [J]. China Civil Engineering Journal, 2013, 46(11): 63 − 69. (in Chinese)
    [14] GB/T 31310−2014, 金属材料 残余应力测定 钻孔应变法 [S]. 北京: 中国标准出版社, 2014.

    GB/T 31310−2014, Metallic material: determination of residual stress: hole drilling strain-gauge method [S]. Beijing: Standard Press of China, 2014. (in Chinese)
    [15] GB 50661−2011, 钢结构焊接规范 [S]. 北京: 中国建筑工业出版社, 2011.

    GB 50661−2011, Code for welding of steel structures [S]. Beijing: China Architecture &Building Press, 2011. (in Chinese)
    [16] GB/T 228.1−2010, 金属材料 拉伸试验: 第1部分: 室温拉伸试验方法 [S]. 北京: 中国标准出版社, 2010.

    GB/T 228.1−2010, Metallic materials: Tensile testing: Part1: Method of test at room temperature [S]. Beijing: Standard Press of China, 2010. (in Chinese)
    [17] 裴怡, 包亚峰, 唐慕尧, 等. 盲孔法测量精度的研究—边界及孔间距的影响[J]. 焊接学报, 1994(3): 191 − 196. doi: 10.3321/j.issn:0253-360X.1994.03.002

    PEI Yi, BAO Yafeng, TANG Muyao, et al. Research on measurement accuracy of blind hole method—Influence of boundary and hole spacing [J]. Transaction of the China Welding Institution, 1994(3): 191 − 196. (in Chinese) doi: 10.3321/j.issn:0253-360X.1994.03.002
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  123
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 修回日期:  2021-11-22
  • 录用日期:  2021-12-10
  • 网络出版日期:  2021-12-10
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回