留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腹板并合双肢冷弯薄壁Σ型钢压弯构件畸变性能试验研究

何子奇 杨光 周绪红 彭赛清

何子奇, 杨光, 周绪红, 彭赛清. 腹板并合双肢冷弯薄壁Σ型钢压弯构件畸变性能试验研究[J]. 工程力学, 2023, 40(2): 25-35. doi: 10.6052/j.issn.1000-4750.2021.08.0626
引用本文: 何子奇, 杨光, 周绪红, 彭赛清. 腹板并合双肢冷弯薄壁Σ型钢压弯构件畸变性能试验研究[J]. 工程力学, 2023, 40(2): 25-35. doi: 10.6052/j.issn.1000-4750.2021.08.0626
HE Zi-qi, YANG Guang, ZHOU Xu-hong, PENG Sai-qing. EXPERIMENTAL RESEARCH ON DISTORTIONAL BEHAVIOR OF COLD-FORMED THIN-WALLED Σ-SHAPED STEEL BUILT-UP SECTIONS UNDER ECCENTIRC COMPRESSION[J]. Engineering Mechanics, 2023, 40(2): 25-35. doi: 10.6052/j.issn.1000-4750.2021.08.0626
Citation: HE Zi-qi, YANG Guang, ZHOU Xu-hong, PENG Sai-qing. EXPERIMENTAL RESEARCH ON DISTORTIONAL BEHAVIOR OF COLD-FORMED THIN-WALLED Σ-SHAPED STEEL BUILT-UP SECTIONS UNDER ECCENTIRC COMPRESSION[J]. Engineering Mechanics, 2023, 40(2): 25-35. doi: 10.6052/j.issn.1000-4750.2021.08.0626

腹板并合双肢冷弯薄壁Σ型钢压弯构件畸变性能试验研究

doi: 10.6052/j.issn.1000-4750.2021.08.0626
基金项目: 国家自然科学基金项目(51508051,51890902)
详细信息
    作者简介:

    杨 光(1995−),男,重庆巴南人,工学硕士,主要从事新能源发电站设计研究(E-mail: 645802849@qq.com)

    周绪红(1956−),男,湖南南县人,教授,工学博士,中国工程院院士,主要从事钢结构、组合结构等研究(E-mail: zhouxuhong@126.com)

    彭赛清(1998−),男,江西鹰潭人,工学硕士,主要从事冷弯型钢结构研究(E-mail: 2291430303@qq.com)

    通讯作者:

    何子奇(1980−),男,甘肃定西人,副教授,工学博士,主要从事钢结构和原竹结构研究(E-mail: heziqi@cqu.edu.cn)

  • 中图分类号: TU392.1;TU317+.1

EXPERIMENTAL RESEARCH ON DISTORTIONAL BEHAVIOR OF COLD-FORMED THIN-WALLED Σ-SHAPED STEEL BUILT-UP SECTIONS UNDER ECCENTIRC COMPRESSION

  • 摘要: 为研究腹板并合双肢冷弯薄壁Σ型钢拼合钢柱的畸变屈曲性能及其相关作用,并评估现行各国规范计算方法适用性,设计制作了22根构件进行压弯试验。以Σ型加劲、腹板孔位、偏心荷载作用位置、柱长等为主要参数,考察其对试件屈曲行为、破坏特征和极限承载能力的影响。结果表明:试验主要发生畸变屈曲或畸变-整体、畸变-局部相关屈曲,Σ型加劲有效地防止了腹板局部屈曲;腹板开孔不会影响屈曲模式的改变;关于强轴和弱轴的偏压位置及偏心距离对试件畸变屈曲行为有显著影响。采用中美技术标准包括中国规范GB 50018−2002、JGJ/T 421−2018以及北美规范NAS 100−2016计算的承载力结果与试验结果进行了对比分析,结果表明:荷载绕强轴偏心作用时,中美规范计算结果均偏于安全;荷载绕弱轴偏心作用时,GB 50018−2002和NAS 100−2016计算结果偏于安全,而JGJ/T 421−2018计算值较为保守,试验与其比值约为1.64,该文建议腹板双肢并合截面整体协同工作下绕弱轴稳定承载力可按全截面计算。
  • 图  1  腹板并合冷弯薄壁Σ型钢截面 /mm

    Figure  1.  Cold-formed thin-walled Σ-shaped built-up section

    图  2  试件编号规则

    Figure  2.  Specimen numbering rules

    图  3  材性标准件试验

    Figure  3.  Coupon tests of material property

    图  4  初始缺陷测点布置

    Figure  4.  Measured arrangement of initial imperfections

    图  5  加载装置

    Figure  5.  Test setup

    图  6  试件破坏模式

    Figure  6.  Failure modes of the specimens

    图  7  自攻螺钉约束双肢并和腹板

    Figure  7.  Self-tapping screws to constrain the composite webs

    8  荷载-轴向位移曲线

    8.  Load-axial displacement curves

    9  荷载-侧向位移曲线

    9.  Load-lateral displacement curves

    10  荷载-应变曲线

    10.  Load-strain displacement curves

    表  1  试验构件设计

    Table  1.   Specimens design

    压弯长度/mm自攻钉间距/mm孔洞位置等分偏压方向及偏心距/mm
    400300(100、150)
    1000300L/2S20(40)、W20
    1600300L/2S20(40)、W20
    2200300L/3S20(40)、W20
    注:S为强轴方向;W为弱轴方向。
    下载: 导出CSV

    表  2  试件实测尺寸及初始缺陷

    Table  2.   Measurements of cross-sections and initial imperfections

    试件名称长度L/mm腹板h/mm板厚t/mm翼缘b/mm卷边d/mm开孔大小/mm加劲肋尺寸/mm螺钉间距/mmΔL/mmΔd/mmws/mmww/mm
    圆心距半径
    Σ400-100-E0-1397.5117.051.9280.5114.7010.010.100.352.482.531.66
    Σ400-100-E0-2397.2117.302.0480.7514.479.910.000.882.352.610.52
    Σ400-150-E0396.9117.871.9280.3315.099.815.210.312.070.560.59
    Σ400-300-E0397.9120.201.9180.8315.029.729.950.190.903.300.57
    Σ1000-300-S20-1998.3123.922.0880.7114.8460.2129.89.930.020.490.961.921.51
    Σ1000-300-S20-2997.5123.862.0380.9114.7360.3129.510.129.990.830.930.890.48
    Σ1000-300-S40-1999.0121.962.0880.7114.6960.0030.09.930.090.630.021.210.82
    Σ1000-300-S40-2997.5123.082.0180.9814.5160.9429.09.830.080.440.543.000.48
    Σ1000-300-W20-1998.9122.942.1181.3214.5860.8029.110.130.260.690.470.660.72
    Σ1000-300-W20-2998.5124.502.0680.4114.4360.8029.210.130.061.001.253.390.66
    Σ1600-300-S20-11598.8126.332.0081.0215.0960.7628.010.130.060.802.172.350.39
    Σ1600-300-S20-21598.5127.071.8980.2014.8361.9028.010.230.040.412.541.450.71
    Σ1600-300-S40-11600.5125.831.9380.3914.3061.0329.09.530.100.891.921.160.81
    Σ1600-300-S40-21588.9125.812.1080.6314.4460.0230.010.230.081.231.911.150.93
    Σ1600-300-W20-11599.1125.072.0180.9915.0161.3329.09.830.011.011.541.181.28
    Σ1600-300-W20-21600.5125.832.0580.8214.7561.1029.09.930.040.531.921.680.42
    Σ2200-300-S20-12198.2128.152.0480.9214.7760.0029.510.130.031.113.082.040.45
    Σ2200-300-S20-22199.2127.402.0780.5714.7159.6029.510.029.991.012.700.701.88
    Σ2200-300-S40-12198.2128.702.0281.1015.1759.5029.510.630.111.413.351.081.56
    Σ2200-300-S40-22195.9123.842.0781.0414.8759.5329.910.730.001.180.922.141.19
    Σ2200-300-W20-12198.5127.802.0680.6415.3758.0030.010.330.100.552.902.311.77
    Σ2200-300-W20-22197.6125.502.0280.6314.9860.3629.59.729.560.951.753.155.98
    注:400 mm短柱试件未开孔;开孔为长圆孔,圆心距为孔洞两个半圆圆心间距离。
    下载: 导出CSV

    表  3  短柱试件试验结果与中美规范计算值对比

    Table  3.   Comparison of the test results and the calculation results of Chinese and American standards for short axial compression columns

    试件名称A/mm2L0/mmL/mm屈曲部位破坏模式半波长/mmPt/kNPGB/kNPJGJ/T/kNPNAS/kNPt/PGBPt/PJGJ/TPt/PNAS
    Σ400-100-E0-11180.74623981/2LD(1)200430362.3362.30453.81.191.190.95
    Σ400-100-E0-21255.64613971/2LD(1)200425362.3362.30453.81.171.170.94
    Σ400-150-E01185.54613971/2LD(1)240422362.3362.32453.81.161.160.93
    Σ400-300-E01191.54623981/2LD(1)200415362.3362.32453.81.151.150.91
    注:A为截面积; L0为试件计算长度; L为试件几何长度;Pt为试验值; PGB为GB 50018−2002计算值; PJGJ/T为JGJ/T 421−2018计算值;PNAS为北美NAS 100−2016计算值。
    下载: 导出CSV

    表  4  压弯试件试验结果与中美规范计算值对比

    Table  4.   Comparison of the test results and the calculation results of Chinese and American standards for eccentric compressive columns

    试件名称A/mm2L0/mmL/mm屈曲部位破坏模式半波长/mmPt/kNPGB/kNPJGJ/T/kNPNAS/kNPt/PGBPt/PJGJ/TPt/PNAS
    Σ1000-300-S20-11310.510629983/4LD(2)400277234.1234.1263.61.181.181.05
    Σ1000-300-S20-21279.510629983/4LD(2)400273234.1234.1263.61.171.171.04
    Σ1000-300-S40-11301.110639993/4LD(2)+L400210190.2190.2202.51.101.101.04
    Σ1000-300-S40-21262.510629983/4LD(2)400212190.2190.2202.51.121.121.05
    Σ1000-300-W20-11328.210639991/2LD(3)+F300224207.1145.0212.71.081.541.05
    Σ1000-300-W20-21294.410639991/2LD(3)+F300239207.1145.0212.71.161.651.13
    Σ1600-300-S20-11274.2166315993/4LD(3)500269222.2222.2240.61.211.211.12
    Σ1600-300-S20-21198.8166215993/4LD(3)+L500271222.2222.2240.61.221.221.13
    Σ1600-300-S40-11216.7166516013/4LD(3)500208178.7178.7185.01.161.161.12
    Σ1600-300-S40-21327.0165315893/4LD(3)500210178.7178.7185.01.181.181.14
    Σ1600-300-W20-11275.0166315991/2LD(3)+F500228192.4134.7195.01.191.691.17
    Σ1600-300-W20-21300.0166516011/2LD(3)+F500258192.4134.7195.01.341.921.32
    Σ2200-300-S20-11304.0226221981/2LD(3)+FT650260208.7208.7230.21.251.251.13
    Σ2200-300-S20-21316.0226321991/2LD(3)+FT650262208.7208.7230.21.261.261.14
    Σ2200-300-S40-11298.0226221981/2LD(3)+FT650200165.6165.6176.61.211.211.13
    Σ2200-300-S40-21307.0226021961/2LD(3)+FT650209165.6165.6176.61.261.261.18
    Σ2200-300-W20-11318.0226321991/2LD(5)+F400192176.7123.7186.41.091.551.03
    Σ2200-300-W20-21280.0226221981/3LD(4)+F500183176.7123.7186.41.041.480.98
    平均值1.181.341.11
    标准差0.0730.2290.075
    变异系数0.0620.1710.068
    注:A为截面积; L0为试件计算长度; L为试件几何长度;Pt为试验值; PGB为GB 50018−2002计算值; PJGJ/T为JGJ/T 421−2018计算值;PNAS为北美NAS 100−2016计算值。
    下载: 导出CSV
  • [1] 叶露, 王宇航, 石宇, 等. 冷弯薄壁型钢框架-开缝钢板剪力墙力学性能研究[J]. 工程力学, 2020, 37(11): 156 − 166. doi: 10.6052/j.issn.1000-4750.2020.01.0005

    YE Lu, WANG Yuhang, SHI Yu, et al. Study on the mechanical properties of cold-formed steel framed shear wall with slits [J]. Engineering Mechanics, 2020, 37(11): 156 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0005
    [2] 吴函恒, 隋璐, 聂少锋, 等. 填充石膏基轻质材料的冷弯型钢复合墙体受剪承载力分析[J]. 工程力学, 2022, 39(4): 177 − 186. doi: 10.6052/j.issn.1000-4750.2021.02.0126

    WU Hanheng, SUI Lu, NIE Shaofeng, et al. Study on shear bearing capacity of cold-formed steel composite walls with lightweight gypsum fillings [J]. Engineering Mechanics, 2022, 39(4): 177 − 186. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0126
    [3] 徐吉民, 幸坤涛, 高向宇, 等. 锈损冷弯薄壁卷边槽钢短柱受压承载力试验研究[J]. 工程力学, 2021, 38(4): 191 − 199, 210. doi: 10.6052/j.issn.1000-4750.2020.06.0376

    XU Jimin, XING Kuntao, GAO Xiangyu, et al. Experimental investigation on compressive bearing capacity of cold-formed thin-walled lipped channel short columns with corrosion [J]. Engineering Mechanics, 2021, 38(4): 191 − 199, 210. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0376
    [4] SCHAFER B W. Local, distortional, and Euler buckling of thin-walled columns [J]. Journal of Structural Engineering, 2002, 128(3): 289 − 299. doi: 10.1061/(ASCE)0733-9445(2002)128:3(289)
    [5] YOUNG B, CHEN J. Design of cold-formed steel built-up closed sections with intermediate stiffeners [J]. Journal of Structural Engineering, 2008, 134(5): 727 − 737. doi: 10.1061/(ASCE)0733-9445(2008)134:5(727)
    [6] MOEN C D. Direct strength design of cold-formed steel members with perforations [D]. Baltimore: Johns Hopkins University, 2008.
    [7] GB 50018−2002, 冷弯薄壁型钢结构技术规范 [S]. 北京: 中国标准出版社, 2003.

    GB 50018−2002, Technical code of cold-formed thin-wall steel structures [S]. Beijing: Standards Press of China, 2003. (in Chinese)
    [8] NAS 100−2016, North American specification for the design of cold-formed steel structural members [S]. Washington DC: American Iron and Steel Institute, 2016.
    [9] ZHANG J H, YOUNG B. Experimental investigation of cold-formed steel built-up closed section columns with web stiffeners [J]. Journal of Constructional Steel Research, 2018, 147: 380 − 392. doi: 10.1016/j.jcsr.2018.04.008
    [10] ZHANG J H, YOUNG B. Finite element analysis and design of cold-formed steel built-up closed section columns with web stiffeners [J]. Thin-Walled Structures, 2018, 131: 223 − 237. doi: 10.1016/j.tws.2018.06.008
    [11] LIU J L, LUE D M, LIN C H. Investigation on slenderness ratios of built-up compression members [J]. Journal of Constructional Steel Research, 2009, 65(1): 237 − 248. doi: 10.1016/j.jcsr.2008.02.012
    [12] ROY K, MOHAMMADJANI C, LIM J B P. Experimental and numerical investigation into the behaviour of face-to-face built-up cold-formed steel channel sections under compression [J]. Thin-Walled Structures, 2019, 134: 291 − 309. doi: 10.1016/j.tws.2018.09.045
    [13] WANG C G, GUO Q L, ZHANG Z N, et al. Experimental and numerical investigation of perforated cold-formed steel built-up I-section columns with web stiffeners and complex edge stiffeners [J]. Advances in Structural Engineering, 2019, 22(10): 2205 − 2221. doi: 10.1177/1369433219836174
    [14] KECHIDI S, FRATAMICO D C, SCHAFER B W, et al. Simulation of screw connected built-up cold-formed steel back-to-back lipped channels under axial compression [J]. Engineering Structures, 2020, 206: 110109. doi: 10.1016/j.engstruct.2019.110109
    [15] ZHOU T H, LI Y C, REN L J, et al. Research on the elastic buckling of composite webs in cold-formed steel back-to-back built-up columns- Part I: Experimental and numerical investigation [J]. Structures, 2021, 30: 115 − 133. doi: 10.1016/j.istruc.2020.12.059
    [16] VY S T, MAHENDRAN M, SIVAPRAKASAM T. Built-up back-to-back cold-formed steel compression members failing by local and distortional buckling [J]. Thin-Walled Structures, 2021, 159: 107224. doi: 10.1016/j.tws.2020.107224
    [17] VY S T, MAHENDRAN M. DSM design of fixed-ended slender built-up back-to-back cold-formed steel compression members [J]. Journal of Constructional Steel Research, 2022, 189: 107053. doi: 10.1016/j.jcsr.2021.107053
    [18] 何子奇, 杨光, 周绪红, 等. 腹板加劲冷弯薄壁拼合H形钢压弯构件畸变性能试验研究[J]. 建筑结构学报, 2022, 43(10): 237 − 248.

    HE Ziqi, YANG Guang, ZHOU Xuhong, et al. Experimental investigation on distortional performance of cold-formed steel built-up channel columns with web-stiffeners under eccentric compression [J]. Journal of Building Structures, 2022, 43(10): 237 − 248. (in Chinese)
    [19] GB/T 228.1−2010, 金属材料 拉伸试验 第1部分: 室温试验方法 [S]. 北京: 中国标准出版社, 2011.

    GB/T 228.1−2010, Metallic materials- tensile testing- Part 1: Method of test at room temperature [S]. Beijing: Standards Press of China, 2011. (in Chinese)
    [20] 周绪红, 王世纪. 薄壁构件稳定理论及其应用 [M]. 北京: 科学出版社, 2009.

    ZHOU Xuhong, WANG Shiji. Stability theory and application of thin-walled structure [M]. Beijing: Science Press, 2009. (in Chinese)
    [21] JGJ 227−2011, 低层冷弯薄壁型钢房屋建筑技术规程 [S]. 北京: 中国建筑工业出版社, 2011.

    JGJ 227−2011, Technical specification for low-rise cold-formed thin-walled steel buildings [S]. Beijing: China Building Industry Press, 2011. (in Chinese)
    [22] JGJ/T 421−2018, 冷弯薄壁型钢多层住宅技术标准 [S]. 北京: 中国建筑工业出版社, 2018.

    JGJ/T 421−2018, Technical standard for cold-formed thin-walled light steel multi-storey residential buildings [S]. Beijing: China Building Industry Press, 2018. (in Chinese)
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  22
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 修回日期:  2022-03-10
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2023-02-01

目录

    /

    返回文章
    返回