EXPERIMENTAL RESEARCH ON DISTORTIONAL BEHAVIOR OF COLD-FORMED THIN-WALLED Σ-SHAPED STEEL BUILT-UP SECTIONS UNDER ECCENTIRC COMPRESSION
-
摘要: 为研究腹板并合双肢冷弯薄壁Σ型钢拼合钢柱的畸变屈曲性能及其相关作用,并评估现行各国规范计算方法适用性,设计制作了22根构件进行压弯试验。以Σ型加劲、腹板孔位、偏心荷载作用位置、柱长等为主要参数,考察其对试件屈曲行为、破坏特征和极限承载能力的影响。结果表明:试验主要发生畸变屈曲或畸变-整体、畸变-局部相关屈曲,Σ型加劲有效地防止了腹板局部屈曲;腹板开孔不会影响屈曲模式的改变;关于强轴和弱轴的偏压位置及偏心距离对试件畸变屈曲行为有显著影响。采用中美技术标准包括中国规范GB 50018−2002、JGJ/T 421−2018以及北美规范NAS 100−2016计算的承载力结果与试验结果进行了对比分析,结果表明:荷载绕强轴偏心作用时,中美规范计算结果均偏于安全;荷载绕弱轴偏心作用时,GB 50018−2002和NAS 100−2016计算结果偏于安全,而JGJ/T 421−2018计算值较为保守,试验与其比值约为1.64,该文建议腹板双肢并合截面整体协同工作下绕弱轴稳定承载力可按全截面计算。Abstract: To study the distortional buckling and interactive behavior of cold-formed steel composite sections with Σ-shaped web channels, and evaluate the applicability of current Chinese and North American codes, 22 members were designed and fabricated for compression-bending test. The main parameters including Σ-shaped stiffener, opening position, eccentric compression direction with respect to the strong & weak axis and the eccentricity are investigated to obtain the influence of each parameter on buckling behavior, failure mode and ultimate bearing capacity of the specimen. The test results indicate that all the specimens present distortional buckling or interaction buckling involving distortional mode; The stiffened-web can effectively prevent local buckling of the web; The holes in the web have slight effect on buckling mode; The eccentric compression locations with respect to the strong & weak axis have a significant effect on buckling behaviour of the specimen. Comparing the experimental results with the calculated bearing capacity results according to current Chinese and North American specifications, including GB 50018−2002, JGJ/T 421−2018 and NAS 100−2016, it is found that the calculations with respect to the strong axis adopting Chinese and North American specifications are all conservative; When the specimens are under eccentric compression with respect to the weak axis, the calculated results employing GB 50018−2002 and NAS 100−2016 are both conservative, while the ratio of the test results to the calculation results of JGJ/T 421−2018 averages 1.64, which is too conservative. Therefore, it is proposed that the bearing capacity of eccentric compression with respect to the weak axis should be calculated in accordance with the overall built-up cross-section when the two Σ-shaped channels of composite column work well together.
-
Key words:
- cold-formed steel /
- Σ-shaped section /
- composite columns /
- eccentric compression /
- distortional buckling
-
表 1 试验构件设计
Table 1. Specimens design
压弯长度/mm 自攻钉间距/mm 孔洞位置等分 偏压方向及偏心距/mm 400 300(100、150) − − 1000 300 L/2 S20(40)、W20 1600 300 L/2 S20(40)、W20 2200 300 L/3 S20(40)、W20 注:S为强轴方向;W为弱轴方向。 表 2 试件实测尺寸及初始缺陷
Table 2. Measurements of cross-sections and initial imperfections
试件名称 长度L/mm 腹板h/mm 板厚t/mm 翼缘b/mm 卷边d/mm 开孔大小/mm 加劲肋尺寸/mm 螺钉间距/mm Δ L/mm Δd/mm ws/mm ww/mm 圆心距 半径 Σ400-100-E0-1 397.5 117.05 1.92 80.51 14.70 − − 10.0 10.10 0.35 2.48 2.53 1.66 Σ400-100-E0-2 397.2 117.30 2.04 80.75 14.47 − − 9.9 10.00 0.88 2.35 2.61 0.52 Σ400-150-E0 396.9 117.87 1.92 80.33 15.09 − − 9.8 15.21 0.31 2.07 0.56 0.59 Σ400-300-E0 397.9 120.20 1.91 80.83 15.02 − − 9.7 29.95 0.19 0.90 3.30 0.57 Σ1000-300-S20-1 998.3 123.92 2.08 80.71 14.84 60.21 29.8 9.9 30.02 0.49 0.96 1.92 1.51 Σ1000-300-S20-2 997.5 123.86 2.03 80.91 14.73 60.31 29.5 10.1 29.99 0.83 0.93 0.89 0.48 Σ1000-300-S40-1 999.0 121.96 2.08 80.71 14.69 60.00 30.0 9.9 30.09 0.63 0.02 1.21 0.82 Σ1000-300-S40-2 997.5 123.08 2.01 80.98 14.51 60.94 29.0 9.8 30.08 0.44 0.54 3.00 0.48 Σ1000-300-W20-1 998.9 122.94 2.11 81.32 14.58 60.80 29.1 10.1 30.26 0.69 0.47 0.66 0.72 Σ1000-300-W20-2 998.5 124.50 2.06 80.41 14.43 60.80 29.2 10.1 30.06 1.00 1.25 3.39 0.66 Σ1600-300-S20-1 1598.8 126.33 2.00 81.02 15.09 60.76 28.0 10.1 30.06 0.80 2.17 2.35 0.39 Σ1600-300-S20-2 1598.5 127.07 1.89 80.20 14.83 61.90 28.0 10.2 30.04 0.41 2.54 1.45 0.71 Σ1600-300-S40-1 1600.5 125.83 1.93 80.39 14.30 61.03 29.0 9.5 30.10 0.89 1.92 1.16 0.81 Σ1600-300-S40-2 1588.9 125.81 2.10 80.63 14.44 60.02 30.0 10.2 30.08 1.23 1.91 1.15 0.93 Σ1600-300-W20-1 1599.1 125.07 2.01 80.99 15.01 61.33 29.0 9.8 30.01 1.01 1.54 1.18 1.28 Σ1600-300-W20-2 1600.5 125.83 2.05 80.82 14.75 61.10 29.0 9.9 30.04 0.53 1.92 1.68 0.42 Σ2200-300-S20-1 2198.2 128.15 2.04 80.92 14.77 60.00 29.5 10.1 30.03 1.11 3.08 2.04 0.45 Σ2200-300-S20-2 2199.2 127.40 2.07 80.57 14.71 59.60 29.5 10.0 29.99 1.01 2.70 0.70 1.88 Σ2200-300-S40-1 2198.2 128.70 2.02 81.10 15.17 59.50 29.5 10.6 30.11 1.41 3.35 1.08 1.56 Σ2200-300-S40-2 2195.9 123.84 2.07 81.04 14.87 59.53 29.9 10.7 30.00 1.18 0.92 2.14 1.19 Σ2200-300-W20-1 2198.5 127.80 2.06 80.64 15.37 58.00 30.0 10.3 30.10 0.55 2.90 2.31 1.77 Σ2200-300-W20-2 2197.6 125.50 2.02 80.63 14.98 60.36 29.5 9.7 29.56 0.95 1.75 3.15 5.98 注:400 mm短柱试件未开孔;开孔为长圆孔,圆心距为孔洞两个半圆圆心间距离。 表 3 短柱试件试验结果与中美规范计算值对比
Table 3. Comparison of the test results and the calculation results of Chinese and American standards for short axial compression columns
试件名称 A/mm2 L0/mm L/mm 屈曲部位 破坏模式 半波长/mm Pt/kN PGB/kN PJGJ/T/kN PNAS/kN Pt/PGB Pt/PJGJ/T Pt/PNAS Σ400-100-E0-1 1180.7 462 398 1/2L D(1) 200 430 362.3 362.30 453.8 1.19 1.19 0.95 Σ400-100-E0-2 1255.6 461 397 1/2L D(1) 200 425 362.3 362.30 453.8 1.17 1.17 0.94 Σ400-150-E0 1185.5 461 397 1/2L D(1) 240 422 362.3 362.32 453.8 1.16 1.16 0.93 Σ400-300-E0 1191.5 462 398 1/2L D(1) 200 415 362.3 362.32 453.8 1.15 1.15 0.91 注:A为截面积; L0为试件计算长度; L为试件几何长度;Pt为试验值; PGB为GB 50018−2002计算值; PJGJ/T为JGJ/T 421−2018计算值;PNAS为北美NAS 100−2016计算值。 表 4 压弯试件试验结果与中美规范计算值对比
Table 4. Comparison of the test results and the calculation results of Chinese and American standards for eccentric compressive columns
试件名称 A/mm2 L0/mm L/mm 屈曲部位 破坏模式 半波长/mm Pt/kN PGB/kN PJGJ/T/kN PNAS/kN Pt/PGB Pt/PJGJ/T Pt/PNAS Σ1000-300-S20-1 1310.5 1062 998 3/4L D(2) 400 277 234.1 234.1 263.6 1.18 1.18 1.05 Σ1000-300-S20-2 1279.5 1062 998 3/4L D(2) 400 273 234.1 234.1 263.6 1.17 1.17 1.04 Σ1000-300-S40-1 1301.1 1063 999 3/4L D(2)+L 400 210 190.2 190.2 202.5 1.10 1.10 1.04 Σ1000-300-S40-2 1262.5 1062 998 3/4L D(2) 400 212 190.2 190.2 202.5 1.12 1.12 1.05 Σ1000-300-W20-1 1328.2 1063 999 1/2L D(3)+F 300 224 207.1 145.0 212.7 1.08 1.54 1.05 Σ1000-300-W20-2 1294.4 1063 999 1/2L D(3)+F 300 239 207.1 145.0 212.7 1.16 1.65 1.13 Σ1600-300-S20-1 1274.2 1663 1599 3/4L D(3) 500 269 222.2 222.2 240.6 1.21 1.21 1.12 Σ1600-300-S20-2 1198.8 1662 1599 3/4L D(3)+L 500 271 222.2 222.2 240.6 1.22 1.22 1.13 Σ1600-300-S40-1 1216.7 1665 1601 3/4L D(3) 500 208 178.7 178.7 185.0 1.16 1.16 1.12 Σ1600-300-S40-2 1327.0 1653 1589 3/4L D(3) 500 210 178.7 178.7 185.0 1.18 1.18 1.14 Σ1600-300-W20-1 1275.0 1663 1599 1/2L D(3)+F 500 228 192.4 134.7 195.0 1.19 1.69 1.17 Σ1600-300-W20-2 1300.0 1665 1601 1/2L D(3)+F 500 258 192.4 134.7 195.0 1.34 1.92 1.32 Σ2200-300-S20-1 1304.0 2262 2198 1/2L D(3)+FT 650 260 208.7 208.7 230.2 1.25 1.25 1.13 Σ2200-300-S20-2 1316.0 2263 2199 1/2L D(3)+FT 650 262 208.7 208.7 230.2 1.26 1.26 1.14 Σ2200-300-S40-1 1298.0 2262 2198 1/2L D(3)+FT 650 200 165.6 165.6 176.6 1.21 1.21 1.13 Σ2200-300-S40-2 1307.0 2260 2196 1/2L D(3)+FT 650 209 165.6 165.6 176.6 1.26 1.26 1.18 Σ2200-300-W20-1 1318.0 2263 2199 1/2L D(5)+F 400 192 176.7 123.7 186.4 1.09 1.55 1.03 Σ2200-300-W20-2 1280.0 2262 2198 1/3L D(4)+F 500 183 176.7 123.7 186.4 1.04 1.48 0.98 平均值 1.18 1.34 1.11 标准差 0.073 0.229 0.075 变异系数 0.062 0.171 0.068 注:A为截面积; L0为试件计算长度; L为试件几何长度;Pt为试验值; PGB为GB 50018−2002计算值; PJGJ/T为JGJ/T 421−2018计算值;PNAS为北美NAS 100−2016计算值。 -
[1] 叶露, 王宇航, 石宇, 等. 冷弯薄壁型钢框架-开缝钢板剪力墙力学性能研究[J]. 工程力学, 2020, 37(11): 156 − 166. doi: 10.6052/j.issn.1000-4750.2020.01.0005YE Lu, WANG Yuhang, SHI Yu, et al. Study on the mechanical properties of cold-formed steel framed shear wall with slits [J]. Engineering Mechanics, 2020, 37(11): 156 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0005 [2] 吴函恒, 隋璐, 聂少锋, 等. 填充石膏基轻质材料的冷弯型钢复合墙体受剪承载力分析[J]. 工程力学, 2022, 39(4): 177 − 186. doi: 10.6052/j.issn.1000-4750.2021.02.0126WU Hanheng, SUI Lu, NIE Shaofeng, et al. Study on shear bearing capacity of cold-formed steel composite walls with lightweight gypsum fillings [J]. Engineering Mechanics, 2022, 39(4): 177 − 186. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0126 [3] 徐吉民, 幸坤涛, 高向宇, 等. 锈损冷弯薄壁卷边槽钢短柱受压承载力试验研究[J]. 工程力学, 2021, 38(4): 191 − 199, 210. doi: 10.6052/j.issn.1000-4750.2020.06.0376XU Jimin, XING Kuntao, GAO Xiangyu, et al. Experimental investigation on compressive bearing capacity of cold-formed thin-walled lipped channel short columns with corrosion [J]. Engineering Mechanics, 2021, 38(4): 191 − 199, 210. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0376 [4] SCHAFER B W. Local, distortional, and Euler buckling of thin-walled columns [J]. Journal of Structural Engineering, 2002, 128(3): 289 − 299. doi: 10.1061/(ASCE)0733-9445(2002)128:3(289) [5] YOUNG B, CHEN J. Design of cold-formed steel built-up closed sections with intermediate stiffeners [J]. Journal of Structural Engineering, 2008, 134(5): 727 − 737. doi: 10.1061/(ASCE)0733-9445(2008)134:5(727) [6] MOEN C D. Direct strength design of cold-formed steel members with perforations [D]. Baltimore: Johns Hopkins University, 2008. [7] GB 50018−2002, 冷弯薄壁型钢结构技术规范 [S]. 北京: 中国标准出版社, 2003.GB 50018−2002, Technical code of cold-formed thin-wall steel structures [S]. Beijing: Standards Press of China, 2003. (in Chinese) [8] NAS 100−2016, North American specification for the design of cold-formed steel structural members [S]. Washington DC: American Iron and Steel Institute, 2016. [9] ZHANG J H, YOUNG B. Experimental investigation of cold-formed steel built-up closed section columns with web stiffeners [J]. Journal of Constructional Steel Research, 2018, 147: 380 − 392. doi: 10.1016/j.jcsr.2018.04.008 [10] ZHANG J H, YOUNG B. Finite element analysis and design of cold-formed steel built-up closed section columns with web stiffeners [J]. Thin-Walled Structures, 2018, 131: 223 − 237. doi: 10.1016/j.tws.2018.06.008 [11] LIU J L, LUE D M, LIN C H. Investigation on slenderness ratios of built-up compression members [J]. Journal of Constructional Steel Research, 2009, 65(1): 237 − 248. doi: 10.1016/j.jcsr.2008.02.012 [12] ROY K, MOHAMMADJANI C, LIM J B P. Experimental and numerical investigation into the behaviour of face-to-face built-up cold-formed steel channel sections under compression [J]. Thin-Walled Structures, 2019, 134: 291 − 309. doi: 10.1016/j.tws.2018.09.045 [13] WANG C G, GUO Q L, ZHANG Z N, et al. Experimental and numerical investigation of perforated cold-formed steel built-up I-section columns with web stiffeners and complex edge stiffeners [J]. Advances in Structural Engineering, 2019, 22(10): 2205 − 2221. doi: 10.1177/1369433219836174 [14] KECHIDI S, FRATAMICO D C, SCHAFER B W, et al. Simulation of screw connected built-up cold-formed steel back-to-back lipped channels under axial compression [J]. Engineering Structures, 2020, 206: 110109. doi: 10.1016/j.engstruct.2019.110109 [15] ZHOU T H, LI Y C, REN L J, et al. Research on the elastic buckling of composite webs in cold-formed steel back-to-back built-up columns- Part I: Experimental and numerical investigation [J]. Structures, 2021, 30: 115 − 133. doi: 10.1016/j.istruc.2020.12.059 [16] VY S T, MAHENDRAN M, SIVAPRAKASAM T. Built-up back-to-back cold-formed steel compression members failing by local and distortional buckling [J]. Thin-Walled Structures, 2021, 159: 107224. doi: 10.1016/j.tws.2020.107224 [17] VY S T, MAHENDRAN M. DSM design of fixed-ended slender built-up back-to-back cold-formed steel compression members [J]. Journal of Constructional Steel Research, 2022, 189: 107053. doi: 10.1016/j.jcsr.2021.107053 [18] 何子奇, 杨光, 周绪红, 等. 腹板加劲冷弯薄壁拼合H形钢压弯构件畸变性能试验研究[J]. 建筑结构学报, 2022, 43(10): 237 − 248.HE Ziqi, YANG Guang, ZHOU Xuhong, et al. Experimental investigation on distortional performance of cold-formed steel built-up channel columns with web-stiffeners under eccentric compression [J]. Journal of Building Structures, 2022, 43(10): 237 − 248. (in Chinese) [19] GB/T 228.1−2010, 金属材料 拉伸试验 第1部分: 室温试验方法 [S]. 北京: 中国标准出版社, 2011.GB/T 228.1−2010, Metallic materials- tensile testing- Part 1: Method of test at room temperature [S]. Beijing: Standards Press of China, 2011. (in Chinese) [20] 周绪红, 王世纪. 薄壁构件稳定理论及其应用 [M]. 北京: 科学出版社, 2009.ZHOU Xuhong, WANG Shiji. Stability theory and application of thin-walled structure [M]. Beijing: Science Press, 2009. (in Chinese) [21] JGJ 227−2011, 低层冷弯薄壁型钢房屋建筑技术规程 [S]. 北京: 中国建筑工业出版社, 2011.JGJ 227−2011, Technical specification for low-rise cold-formed thin-walled steel buildings [S]. Beijing: China Building Industry Press, 2011. (in Chinese) [22] JGJ/T 421−2018, 冷弯薄壁型钢多层住宅技术标准 [S]. 北京: 中国建筑工业出版社, 2018.JGJ/T 421−2018, Technical standard for cold-formed thin-walled light steel multi-storey residential buildings [S]. Beijing: China Building Industry Press, 2018. (in Chinese) -